Synlett 2013; 24(11): 1423-1427
DOI: 10.1055/s-0033-1338453
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Formamidation of Arylboronic Acids: Direct Access to Formanilides

Vishnu P. Srivastava
a   Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Deepak K. Yadav
b   Alternative Therapeutic Unit, Drug Development Division, Medicinal Research Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India
,
Arvind K. Yadav
a   Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
,
Geeta Watal
b   Alternative Therapeutic Unit, Drug Development Division, Medicinal Research Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India
,
Lal Dhar S. Yadav*
a   Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India   Fax: +91(532)2460533   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 19 March 2013

Accepted after revision: 08 April 2013

Publication Date:
08 May 2013 (online)


Abstract

A new approach for direct synthesis of formanilides starting from structurally varied arylboronic acids is reported. The protocol involves a copper-catalyzed Chan–Lam coupling reaction between arylboronic acids and formamide in the presence of a base at room temperature. The strategy offers a valid and practical alternative to existing transformations of amino, nitro, and azido arenes to formanilides, especially in terms of executing arylboronic acids as easily accessible, stable, and diversified substrates, under mild reaction conditions, and in a simple operation with high efficiency.

 
  • References and Notes

    • 1a Bipp H, Kieczka H In Ullmann’s Encyclopedia of Industrial Chemistry . Vol. A12. Elvers B, Hawkins S, Ravenscroft M, Rounsaville JF, Schulz G. VCH; Weinheim: 1989: 1-12
    • 1b Urbaneja M, Knowles CO. Gen. Pharmacol. Vasc. Syst. 1979; 10: 309
    • 1c Anderson GP. Life Sci. 1993; 52: 2145
    • 1d Kampfen U, Veghini D, Roberge D, Randall J. US 7268255, 2007
  • 2 Joulain D. Flav. Frag. J. 1987; 2: 149
  • 3 Kotachi S, Tsuji Y, Kondo T, Watanabe Y. J. Chem. Soc., Chem. Commun. 1990; 549
  • 4 Petit GR, Kalnins MV, Liu TM. H, Thomas EG, Parent K. J. Org. Chem. 1961; 26: 2563
    • 5a Jackson A, Meth-Cohn O. J. Chem. Soc., Chem. Commun. 1995; 1319
    • 5b Meth-Cohn O, Taylor DL. Tetrahedron Lett. 1993; 34: 3629
    • 6a Kakehi A, Ito S, Hayashi S, Fujii T. Bull. Chem. Soc. Jpn. 1995; 68: 3573
    • 6b Kobayashi K, Nagato S, Kawakita M, Morikawa O, Konishi H. Chem. Lett. 1995; 575
    • 6c Bonin M.-A, Giguere D, Roy R. Tetrahedron 2007; 63: 4912
    • 7a Green TW, Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. Wiley-Interscience; New York: 1999
    • 7b Sheehan JC, Yang DD. H. J. Am. Chem. Soc. 1958; 80: 1154
    • 7c Barnett BK, Roberts TD. J. Chem. Soc., Chem. Commun. 1972; 758
    • 8a Mandel HG, Hill AJ. J. Am. Chem. Soc. 1954; 76: 3978
    • 8b Hansen BW, Pedersen EB. Act. Chem. Scand. B 1980; 34: 369
    • 8c Han Y, Cai L. Tetrahedron Lett. 1997; 38: 5423
    • 9a Kobayashi G, Saito T, Kitano Y. Synthesis 2011; 3225
    • 9b Porcheddu A, Giacomelli G, Salaris M. J. Org. Chem. 2005; 70: 2361
    • 9c Ugi I. Angew. Chem., Int. Ed. Engl. 1982; 21: 810
    • 9d Waki J, Meienhofer J. J. Org. Chem. 1977; 42: 2019
    • 9e Schollkopf U. Angew. Chem., Int. Ed. Engl. 1977; 16: 339
  • 10 Vougioukalakis GC, Grubbs RH. J. Am. Chem. Soc. 2008; 130: 2234
    • 11a Daszkiewicz Z, Domanski A, Kyziol JB. Chem. Pap. 1993; 47: 109
    • 11b Effenberger F, Eichhorn J. Tetrahedron: Asymmetry 1997; 8: 469
    • 12a Iseki K, Mizuno S, Kuroki Y, Kobayashi Y. Tetrahedron 1999; 55: 977
    • 12b Kobayashi S, Nishio K. J. Org. Chem. 1994; 59: 6620
    • 12c Kobayashi S, Yasuda M, Hachiya I. Chem. Lett. 1996; 407
    • 13a Just F. Ber. Dtsch. Chem. Ges. 1886; 19: 1201
    • 13b Hirst HR, Cohen JB. J. Chem. Soc. 1895; 67: 829
    • 13c Galat A, Elion G. J. Am. Chem. Soc. 1943; 65: 1566
    • 13d Roberts JC, Selby K. J. Chem. Soc. 1949; 152: 2788
    • 13e Fieser LF, Jones JE. Org. Synth., Coll. Vol. III 1955; 590
    • 13f Huffman CW. J. Org. Chem. 1958; 23: 727
    • 14a Pettit GR, Thomas EG. J. Org. Chem. 1959; 24: 895
    • 14b Joseph S, Das P, Srivastava B, Nizar H, Prasad M. Tetrahedron Lett. 2013; 54: 929
    • 14c Yale HL. J. Org. Chem. 1971; 36: 3238
    • 14d Duczek W, Deutsch J, Vieth S, Niclas H.-J. Synthesis 1996; 37
    • 14e Strazzolini P, Giumanini AG, Cauci S. Tetrahedron 1990; 46: 1081
    • 14f Blicke FF, Lu C.-J. J. Am. Chem. Soc. 1952; 74: 3933
    • 14g Reddy PG, Kumar GD. K, Baskaran S. Tetrahedron Lett. 2000; 41: 9149
    • 14h Hill DR, Hasiao C.-N, Kurukulasuriya R, Wittenberger SJ. Org. Lett. 2002; 4: 111
    • 14i Cochet T, Bellosta V, Greiner A, Roche D, Cossy J. Synlett 2011; 1920
    • 16a Shekhar AC, Kumar AR, Sathaiah G, Paul VL, Sridhar M, Rao PS. Tetrahedron Lett. 2009; 50: 7099
    • 16b Kim J.-G, Jang DO. Synlett 2010; 1231
    • 16c Kim J.-G, Jang DO. Synlett 2010; 2093
    • 16d Lei M, Ma L, Hu L. Tetrahedron Lett. 2010; 51: 4186
    • 16e Pathare SP, Sawant RV, Akamanchi KG. Tetrahedron Lett. 2012; 53: 3259
    • 16f Majumdar S, De J, Hossain J, Basak A. Tetrahedron Lett. 2013; 54: 262 ; and references cited therein
    • 17a Hrvatin P, Sykes AG. Synlett 1997; 1069
    • 17b Baskaran S, Pratap TV. Tetrahedron Lett. 2001; 42: 1983
    • 17c Reddy PG, Baskaran S. Tetrahedron Lett. 2002; 43: 1919
    • 17d Lee KY, Kim J.-M, Kim J.-N. Bull. Korean Chem. Soc. 2002; 23: 1360
    • 17e Lou X.-B, He L, Qian Y, Liu Y.-M, Cao Y, Fan K.-N. Adv. Synth. Catal. 2011; 353: 281
    • 18a Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 18b Lam PY. S, Clark CG, Saubern S, Adams J, Winters MP, Chan DM. T, Combs A. Tetrahedron Lett. 1998; 39: 2941
    • 18c Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937
    • 18d Li JJ. Name Reactions . 4th ed. Springer; Berlin: 2009: 101-104
    • 19a Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 19b Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Wiley-VCH; Weinheim: 2007
    • 19c Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 19d Barluenga J, Tomas-Gamasa M, Aznar F, Valdes C. Nat. Chem. 2009; 1: 494
    • 20a Rao H, Fu H, Jiang Y, Zhao Y. Angew. Chem. Int. Ed. 2009; 48: 1114
    • 20b Yang H, Li Y, Wang J, Fu H. Chem. Eur. J. 2011; 17: 5652
    • 20c Zhu C, Li G, Ess DH, Falack JR, Kurti L. J. Am. Chem. Soc. 2012; 134: 18253
    • 20d Raghuvanshi DS, Gupta AK, Singh KN. Org. Lett. 2012; 14: 4326
    • 20e Chernick ET, Ahrens MJ, Scheidt KA, Wasielewski MR. J. Org. Chem. 2005; 70: 1486
    • 20f Lan J.-B, Zhang G.-L, Yu X.-Q, You J.-S, Chen L, Yan M, Xie R.-G. Synlett 2004; 1095
    • 20g Singh BK, Appukkuttan P, Claerhout S, Parmar VS, Van der Eycken E. Org. Lett. 2006; 8: 1863
    • 20h Kantam ML, Neelima B, Reddy CV, Neeraja V. J. Mol. Catal. A: Chem. 2006; 249: 201
    • 20i Hugel HM, Rix CJ, Fleck K. Synlett 2006; 2290
    • 20j Zheng Z.-G, Wen J, Wang N, Wu B, Yu X.-Q. Beilstein J. Org. Chem. 2008; 4: 40
    • 21a Manna S, Maity S, Rana S, Agasti S, Maiti D. Org. Lett. 2012; 14: 1736
    • 21b Grimes KD, Gupte A, Aldrich CC. Synthesis 2010; 1441
    • 21c Xu H.-J, Zhao Y.-Q, Feng T, Feng Y.-S. J. Org. Chem. 2012; 77: 2649
    • 21d Chen C, Xie Y, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
    • 21e Kantam ML, Neelima B, Sreedhar B, Chakravarti R. Synlett 2008; 1455
    • 21f Xu J, Wang X, Shao C, Su D, Cheng G, Hu Y. Org. Lett. 2010; 12: 1964
    • 22a Hernadura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
    • 22b Zhang G, Chen S, Fei H, Cheng J, Chen F. Synlett 2012; 23: 2247
    • 22c Zhang C.-P, Cai J, Zhou C.-B, Wang X.-P, Zheng X, Gu Y.-C, Xiao J.-C. Chem. Commun. 2011; 47: 9516
    • 22d Zhang G, Lv G, Li L, Chen F, Cheng J. Tetrahedron Lett. 2011; 52: 1993
    • 22e Wu H, Hynes JJr. Org. Lett. 2010; 12: 1192
    • 24a Schnyder A, Beller M, Mehltretter G, Nsenda T, Studer M, Indolese AF. J. Org. Chem. 2001; 66: 4311
    • 24b Wan YQ, Alterman M, Larhed M, Hallberg A. J. Comb. Chem. 2003; 5: 82
    • 24c Srinivasan S, Manisankar P. Synth. Commun. 2010; 40: 3538
    • 24d Allen CL, Atkinson BN, Williams JM. J. Angew. Chem. Int. Ed. 2012; 51: 1383
  • 25 General Procedure for the Synthesis of Formanilides 2 To an open flask containing a solution of arylboronic acid 1 (1.0 mmol) in formamide (2 mL) were added Cu(OAc)2·H2O (19.9 mg, 10 mol%) and K2CO3 (138.2 mg, 1 mmol), and the mixture was stirred vigorously at r.t. under air (without bubbling air) for 8–16 h (Table 2). After completion of the reaction (indicated by TLC), the reaction mixture was treated with EtOAc (5 mL) and H2O (5 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (3 × 5 mL). The combined organic phase was washed with H2O (2 × 5 mL), dried over anhyd Na2SO4, and concentrated to yield a residue, which was purified by flash chromatography (prepacked silica cartridges) to afford the clean product 2 as a mixture of rotamers.27 All the products are known compounds and were characterized by comparison of their melting points and spectral data with those reported in the literature.14–17 As a typical example, the data for 2a are given. N-Phenylformamide (2a, Table 2) Isolated as a pale brownish solid (109 mg, 90%); mp 48–49 °C [lit.17a 47–48 °C]. 1H NMR (400 MHz, CDCl3): δ = 9.12 (br s, 1 H, NH), 8.70 (d, J = 11.4 Hz, 1 H, CHO), 8.39 (s, 1 H, CHO), 8.10 (br s, 1 H, NH), 7.54 (d, J = 7.8 Hz, 2 H, ArH), 7.39–7.31 (m, 4 H, ArH), 7.20–7.14 (m, 2 H, ArH), 7.09 (d, J = 7.7 Hz, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 163.1, 159.5, 137.0, 136.7, 129.8, 128.9, 125.0, 124.6, 119.9, 118.6. IR (KBr): 3252, 3048, 1686, 1602, 1550, 1430, 1352, 758, 710, 696 cm–1. MS (EI): m/z = 122 [M+ + 1]. Anal. Calcd for C7H7NO: C, 69.41; H, 5.82; N, 11.56. Found: C, 69.16; H, 5.96; N, 11.48.
    • 26a King AE, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2009; 131: 5044
    • 26b King AE, Ryland BL, Brunold TC, Stahl SS. Organometallics 2012; 31: 7948
    • 26c Kbrahim K, Baghersad MH. Adv. Synth. Catal. 2011; 353: 2599
  • 27 Manea VP, Wilson KJ, Cable JR. J. Am. Chem. Soc. 1997; 119: 2033