N-Heterocyclic Carbene Catalyzed Reaction of 2-(2-Aroylvinyl)cinnamaldehydes with $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Imines: An Efficient Method for the Stereoselective Synthesis of Highly Functionalized Indane Derivatives

Ming-Sheng Tang, Yuan Zhao, Ying Cheng*
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. of China
Fax +86(10)58805558; E-mail: ycheng2@bnu.edu.cn
Received: 27.08.2013; Accepted after revision: 13.10.2013

Abstract

The NHC-catalyzed reaction of 2-(2-aroylvinyl)cinnamaldehydes with α, β-unsaturated imines was studied, which produced good yields of novel 3-aryl-9-[1,3-diaryl-3-(4-tolylsul-fonamido)allyl]-9,9a-dihydroindeno[2,1-c]pyran-1(4a H)-ones with high diastereoselectivity. The products can be easily converted into different highly functionalized indane derivatives via simple operations. Thus, this work provides a simple and efficient method for the stereoselective synthesis of 1,2,3-trisubstituted indane derivatives.

Key words: N-heterocyclic carbene, catalysis, 2-(2-aroylvinyl)cinnamaldehyde, α, β-unsaturated imine, indane

A large number of indane derivatives are known to have a wide spectrum of biological activity. For example, indanes A substituted by 4-aminobutyl and benzyl show strong antibacterial activity (Figure 1). ${ }^{1}$ 5-(5,6-Dichloro-indan-1-yl)-1 H -tetrazole (B) and 5-[(5,6-dichloroindan1 -yl)methyl]-1 H -tetrazole (C) display significant analgesic and anti-inflammatory activity. ${ }^{2}$ The indanyl-substituted guanidiniums \mathbf{D} have been investigated as smallmolecule HIV-1 entry inhibitors, ${ }^{3}$ and the sulfamides of 1-amino- and 2-aminoindanes \mathbf{E} and \mathbf{F} are potential carbonic anhydrase isoenzymes inhibitors. ${ }^{4}$ 3-Amino-1-(indan-

5-yloxy)propan-2-ol derivatives \mathbf{G} exhibited blocking activity for Na^{+}channels, useful as potent sodium-channel blockers for the treatment of stroke victims. ${ }^{5}$ Various indane derivatives \mathbf{H} derived from 7-aminoindan-4-ol are potent liver-selective thyroid hormone receptor β (TR β) agonists for the treatment of dyslipidemia, ${ }^{6}$ while the 1-aminoindan-2-ol or 2-aminoindan-1-ol derivatives I and \mathbf{J} have highly potent protein kinase C inhibitory activity. ${ }^{7}$ Due to their biological, pharmaceutical, and synthetic importance, interest in the synthesis of novel indane derivatives remains undiminished. ${ }^{2,8}$

Cascade reactions catalyzed by N-heterocyclic carbenes (NHCs) have received attention due to the resulting rapid generation of complex products. ${ }^{9}$ A few N-heterocyclic carbene catalyzed reactions have been reported to produce different indene or indane derivatives. For example, the cascade reactions of 2 -formylcinnamates with imines, phthalaldehydes with imines, and phthalaldehydes with 3aroylacrylates in the presence of NHC catalysts gave substituted indan-1-ones, ${ }^{10 \mathrm{a}-\mathrm{c}}$ while NHC-catalyzed reaction of 3,3'-(1,2-phenylene)bis(1-phenylpropenones) with aldehydes produced 1,2,3-trisubstituted indanes. ${ }^{10 \mathrm{~d}}$ Under catalysis by NHCs, the dimerization of o-formylchalcones
 $\mathrm{CH}_{2} \mathrm{Ph}$
A

B: $\mathrm{n}=0$
C: $\mathrm{n}=1$

E: 1-indanylsulfamide
F: 2-indanylsulfamide

X, Y: different aryls, heterocyclic groups

G

$\mathrm{Y}=\mathrm{NHCOCH}_{2}, \mathrm{NHCO}$,
$\mathrm{CONHCH}_{2}, \mathrm{NHSO}_{2} \mathrm{CH}_{2}$
H

Figure 1 Some bioactive indane derivatives
or o-formylcinnamates, or the reaction of o-formylchalcones with phthalaldehydes, afforded indene-spiro-indanone derivatives. ${ }^{10 \mathrm{e}} \mathrm{On}$ the other hand, the dimerization of phthalaldehydes catalyzed by a imidazole or triazole carbene produced dihydroisobenzofuran-spiro-indanones or indeno $[2,1-a]$ indanone derivatives, respectively. ${ }^{10 f}$ NHCcatalyzed self-reaction of 2-(2-aroylvinyl)cinnamaldehydes gave indeno[2,1-c]pyran-1-ones that were converted into indane-2-carboxylates or indane-2-carboxamides by the addition of alcohols or amines, ${ }^{11 a, b}$ and the oxidative NHC-catalyzed cascade reaction between 2-(2-aroylvinyl)cinnamaldehydes and β-diketones produced $9-(\beta-$ diketones)indeno[2,1-c]pyran-1-ones. ${ }^{11 c}$ Our attention has mainly focused on NHC-catalyzed reactions in recent years. ${ }^{10 f, 12} \mathrm{We}$ are interested in NHC-catalyzed reactions of multifunctional reactants in terms of various possible reaction pathways and complex structures of products. We envisioned that the reaction between α, β-unsaturated aldehydes linked with a Michael acceptor and α, β-unsaturated imines might have several different pathways. Thus, we studied the NHC-catalyzed reaction of 2-(2-aroylvinyl)cinnamaldehydes with N-sulfonyl ketimines, which provided an efficient and stereoselective method for the synthesis of highly functionalized indane derivatives.
We started this work by studying the reaction employing 2-(2-benzoylvinyl)cinnamaldehyde (1a) and 1,3-diphe-nyl- N-tosylprop-2-en-1-imine (2a) as model substrates (Table 1). At ambient temperature and in dichloromethane, the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}(\mathbf{1 a} / \mathbf{2 a} 1: 1.5)$ was initially catalyzed using $20 \mathrm{~mol} \%$ of various triazole carbenes $\mathbf{3 a}{ }^{\prime}-$ \mathbf{d}^{\prime} that were generated from triazolium salts $\mathbf{3 a}-\mathbf{d}$ with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). All these reactions produced product $\mathbf{4 a}$, which was confirmed to be 9-[1,3-diphenyl-3-(4-tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]pyran-1(4a H)-one by spectroscopic and single crystal X-ray diffraction analyses, ${ }^{13}$ and the highest yield (66%) of $\mathbf{4 a}$ was obtained from the reaction catalyzed by N-(pentafluorophenyl)pyrrolo[2,1-c]triazole carbene 3d' (entries 1-4). Replacement of triazole carbene catalysts with thiazole carbene $\mathbf{3} \mathbf{e}^{\prime}$ or imidazole carbenes $\mathbf{3 f}^{\prime}$ and $\mathbf{3} \mathbf{g}^{\prime}$ resulted in no product or trace yields of product. Under the catalysis of triazole carbene $\mathbf{3 d} \mathbf{d}^{\prime}$, the reaction conditions were further optimized by varying temperature, solvent, and the base used to generate the carbene catalyst. It was found that decreasing reaction temperature to $0{ }^{\circ} \mathrm{C}$ improved the yield of $\mathbf{4 a}$ to 78%, however, further decreasing the temperature to $-20^{\circ} \mathrm{C}$ did not benefit the reaction, while elevating the temperature to the boiling point of dichloromethane led to the formation of product in a lower yield (entries 7-9). At $0^{\circ} \mathrm{C}$, the use of other solvents including benzene, acetone, acetonitrile, and tetrahydrofuran, or other bases like potassium tert-butoxide, sodium hydride, and cesium carbonate, all diminished the yield of product (entries $10-16$). In addition to the major product $\mathbf{4 a}$, a small amount of a minor product (below 10%) was detected in the crude product of most reactions by ${ }^{1} \mathrm{H}$ NMR.

The scope of the reaction was then studied under the optimized conditions using α, β-unsaturated aldehydes $\mathbf{1}$ and α, β-unsaturated imines 2 that bear different substituents. It was found that the substituents of both reactants have a small influence on the reaction. As illustrated in Table 2, the reaction between 2-(2-aroylvinyl)cinnamaldehyde 1 and α, β-unsaturated imine 2 substituted by either electrondonating or electron-withdrawing groups on any of the four phenyl rings in $\mathbf{1}$ and $\mathbf{2}$, proceeded rapidly and efficiently to furnish products 4 in $69-84 \%$ yields in 20 minutes (entries $1-10,13-15$). Since the two phenyl groups of 2-(2-aroylvinyl)cinnamaldehydes $\mathbf{1}$ and the phenyl on the imine group of ketimines $\mathbf{2}$ are remote from the site of the reaction between $\mathbf{1}$ and $\mathbf{2}$, we considered that the steric effects of the substituents attached to these three phenyl rings could be ignored. Thus, we only examined the influence of the position of substituent attached to the phenyl group at C3 of ketimine 2. 3-(4-Methoxyphenyl)prop-2-en-1-imine 2c and 3-(3-methoxyphenyl)prop-2-en-1-imine 2 e gave higher yields of products ($71-79 \%$) than that of 3-(2-methoxyphenyl)prop-2-en-1-imine $\mathbf{2 f}$ (63\%) when they reacted with enal $1 \mathbf{1 a}$ (entries 9,11 , and 12). In addition to the product 4 , the minor product 5 was detected in the crude products by ${ }^{1} \mathrm{H}$ NMR in $3-19 \%$ yields (ratio 4/5~4:1-21:1). Initially, we thought that compounds 5 were diastereomers of products 4 . However, after the isolation of compound $\mathbf{5 j}$, the spectroscopic characterization and single crystal X-ray diffraction analysis ${ }^{13}$ confirmed that $\mathbf{5 j}$ was 8-(benzoylmethyl)-3-(4-bromophenyl)-2-[phenyl(4-tolylsulfonamido)methylene]-3,3a,8,8a-tetrahydrocyclopenta $[a]$ inden $1(2 H)$-one, which is derived from the intramolecular transformation of one diastereomer of the major product $\mathbf{4 j}$. The minor products $\mathbf{5}$ were difficult to separate from the corresponding major products $\mathbf{4}$ by chromatography due to the fact that each pair of 4 and $\mathbf{5}$ has a similar polarity. Thus, with the exception of $\mathbf{5 j}$ which has the highest yield (19\%) and the largest difference of polarity to $\mathbf{4 j}$, other minor products 5 were not isolated. The byproducts 5 can be removed from the major products 4 by recrystallization.
To account for the formation of 3-aryl-9-[1,3-diaryl-3-(4-tolylsulfonamido)allyl]indeno[2,1-c]pyran-1-ones 4 and 8-(aroylmethyl)-3-aryl-2-[aryl(4-tolylsulfonamido)meth-ylene]-3,3a, $8,8 \mathrm{a}$-tetrahydrocyclopenta $[a]$ inden $-1(2 H)$-ones 5 from 2-(2-aroylvinyl)cinnamaldehydes 1 and N -tosyl ketimines 2, a cascade reaction mechanism comprising two Michael additions is proposed (Scheme 1). Firstly, the homoenolate $\mathbf{6}$ derived from enal $\mathbf{1}$ and carbene $\mathbf{3}^{\prime}$ undergoes intermolecular Michael addition to α, β-unsaturated imine 2 to form enamine anion 7, which isomerizes to enolate $\mathbf{8}$ by proton transfer. The intramolecular Michael addition of $\mathbf{8}$ yields diastereomeric indane intermediates $\mathbf{9}$ and 10. Intramolecular lactonization of $\mathbf{9}$ and $\mathbf{1 0}$ forms 9-[1,3-diaryl-3-(4-tolylsulfonamido)allyl]indeno[2,1-c]py-ran-1-ones 4 and 11, respectively. This reaction occurs by a cascade process to form four stereocenters, however, only the racemates of $\left(4 a S, 9 S, 9 \mathrm{a} S, 1^{\prime} R\right)$ - and (4a $R, 9 R, 9 \mathrm{a} R, 1^{\prime} S$)-9-[1,3-diaryl-3-(4-tolylsulfonamido)al-
lyl]indeno[2,1-c]pyran-1-ones 4 are found in the reaction The stereoselective formation of products 4 can be explained by the steric effects of substituents. In the formation of the indane ring of 4 , the substituents attached to the stereocenters at C9 and C9a are arranged in a trans configuration to reduce the repulsion of substituents, while the two fused C4a and C9a stereocenters are in a cis configuration to avoid fused-ring strain. The minor cyclopenta $[a]$ inden-1-one products 5 are derived from the isomerization of minor diastereomers 11 by the intramolecular addition of the enamine to the δ-lactone species of 11 under the catalysis of a base, such as triazole carbene
or DBU. However, the major diastereomers 4 could not undergo such a transformation as the enamine and δ-lactone species of $\mathbf{4}$ are trans substituted on the indane ring.
The lactone moiety of indeno[2,1-c]pyran-1-ones are known to be easily cleaved by the addition of nucleophiles, such as alcohols or amines. ${ }^{11 a, \mathrm{~b}}$ Therefore, it would be possible to convert 9-[3-(sulfonamido)allyl]inde-no[2,1-c] pyran-1-ones 4 into various highly functionalized indane derivatives. To extend the applications of the current reaction in the synthesis of indane derivatives, the different transformations of 3-aryl-9-[1,3-diaryl-3-(tolyl-

Table 1 Optimization of the Reaction Conditions

[^0]sulfonamido)allyl]indeno[2,1-c]pyran-1-ones 4 were examined. For example, $\mathbf{4 a}$ was converted into methyl 1-(benzoylmethyl)-3-[1,3-diphenyl-3-(4-tolylsulfonami-do)allyl]indane-2-carboxylate (14) in 82% yield on heating in refluxing methanol. At ambient temperature, the hydrolysis of $\mathbf{4 a}$ with aqueous 30% sodium hydroxide solution followed by saturated aqueous solution of ammonium chloride in tetrahydrofuran afforded 1-(benzoyl-methyl)-3-(2-benzoyl-1-phenylethyl)indane-2-carboxylic acid (15) in 80% yield. Reduction of $4 \mathbf{a}$ with lithium aluminum hydride in tetrahydrofuran produced 9-[1,3-diphe-nyl-3-(4-tolylsulfonamido)allyl]-3-phenyl-1,4a,9,9a-tetrahydroindeno[2,1-c]pyran (16) in 70\% yield (Scheme $2)$.

Enantioselective synthesis of 9-[3-(sulfonamido)allyl]indeno[$2,1-c$]pyran-1-ones 4 was also attempted using chiral triazole carbenes. As shown in Scheme 3, while chiral pyrrolo[2,1-c]triazole carbene 3h did not promoted the reaction of enal 1a with N-tosyl ketimine 2a, a small amount of product $\mathbf{4 a}(15 \%)$ was obtained from the reaction catalyzed by N-(pentafluorophenyl)hexahydroindeno[2,1$b]$ triazolo $[3,4-c][1,4]$ oxazine carbene 3i. However, to our delight, under catalysis by N-phenylhexahydroinde-no[2,1-b]triazolo[3,4-c][1,4] oxazine carbene $\mathbf{3 j}$, the reaction of enal 1a with ketimine 2a provided $\mathbf{4 a}$ in 45% yield with high enantioselectivity (90% ee, absolute configuration of $\mathbf{4 a}$ was not determined.) (Scheme 3). This initial study on the asymmetric reaction of 2-(2-benzoylvinyl)cinnamaldehyde (1a) with N-tosyl ketimine 2a indi-

Table 2 The Reaction of 2-(2-Aroylvinyl)cinnamaldehydes $\mathbf{1}$ with 1,3-Diaryl- N-tosylprop-2-en-1-imines 2 under Optimized Conditions

[^1]

1

Scheme 1 The proposed mechanism for the formations of 3-aryl-9-[1,3-diaryl-3-(4-tolylsulfonamido)allyl]indeno[2,1-c]pyran-1-ones 4 and 8-(aroylmethyl)-3-aryl-2-[aryl(4-tolylsulfonamido)methylene]-3,3a,8,8a-tetrahydrocyclopenta[a]inden-1(2H)-ones $\mathbf{5}$ from the reaction 2-(2aroylvinyl)cinnamaldehydes $\mathbf{1}$ with 1,3-diaryl- N-tosylprop-2-en-1-imines 2

16: 70\%

Scheme 3 Asymmetric reaction of 2-(2-benzoylvinyl)cinnamaldehyde 1a with N-tosyl ketimine 2a catalyzed by chiral triazole carbenes

Scheme 2 The transformations of 9-[1,3-diphenyl-3-(4-tolylsulfon-amido)allyl]-3-phenylindeno[2,1-c]pyran-1-one 4a
cates that the enantioselective synthesis of 9-[3-(sulfonamido)allyl]indeno[2,1-c]pyran-1-ones 4 can be achieved using chiral triazole carbene $\mathbf{3 j}$ as the catalyst.

In summary, we have developed an efficient NHC-catalyzed reaction of 2-(2-aroylvinyl)cinnamaldehydes with α, β-unsaturated imines, which produced good yields of novel 3-aryl-9-[1,3-diaryl-3-(4-tolylsulfonamido)allyl]in-deno[2,1-c]pyran-1-ones with high diastereoselectivity. Indane is a framework that is found in a large number of bioactive and pharmaceutically important molecules. This work provided unique indane derivatives that are amenable to further transformations.

Commercially available chemical reagents were used without further purification. Anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was prepared by distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$. Melting points are uncorrected. Petroleum ether $=\mathrm{PE} .{ }^{1} \mathrm{H}$ (400 or 500 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 or 125 MHz) were recorded in the indicated solvents using a Bruker instrument. IR spectra were recorded using an AVATAR 360 FT-IR spectrophotometer. Mass spectra were recorded on a Surveyor MSQ Plus (ESI) instrument. Column chromatography was performed using 200-300 mesh silica gel. The 2-(2-aroylvinyl)cinnamaldehydes $1,{ }^{14} 1,3$-diaryl- N-tosyl-prop-2-en-1-imines 2, ${ }^{15}$ and NHC precursor $\mathbf{3 d}{ }^{16}$ were prepared according to literature methods.

NHC-Catalyzed Reaction of 2-(2-Aroylvinyl)cinnamaldehydes 1 with 1,3-Diaryl- N-tosylprop-2-en-1-imines 2; General Procedure
Under N_{2} atmosphere and at $0^{\circ} \mathrm{C}, 2$-(2-aroylvinyl)cinnamaldehyde 1 (0.5 mmol), 1,3-diaryl- N-tosylprop-2-en-1-imines 2 (0.75 mmol), N-(pentafluorophenyl)pyrrolo $[2,1-c]$ triazolium salt $\mathbf{3 d}(0.1 \mathrm{mmol})$, and $4-\AA$ molecular sieves (250 mg) were mixed in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$. The mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$, and then DBU (0.1 mmol) was added using a microsyringe. The mixture was stirred at $0^{\circ} \mathrm{C}$ for ca. 20-30 min until the enal 1 had been consumed. After removal of molecular sieves and the solvent, the residue was purified by flash column chromatography (silica gel, $\mathrm{PE}-\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ EtOAc, 16:4:1) to give 4, which contained a trace amount of byproduct 5 . The major product $\mathbf{4}$ was further purified by recrystallization (n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
($4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1 R^{*}, Z$-9-[1,3-Diphenyl-3-(4-tolylsulfonami-do)allyll-3-phenyl-9,9a-dihydroindeno $[2,1-c]$ pyran-1(4aH)-one (4a)
White crystals; yield: $243 \mathrm{mg}(0.39 \mathrm{mmol}, 78 \%) ; \mathrm{mp} 180-182^{\circ} \mathrm{C}$. IR: $3250,1748,1628,1595 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}): $\delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.35(\mathrm{~m}, 8 \mathrm{H}), 7.16$ (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.85 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.01$ (d, $J=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22$ (t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=$ $8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,148.9,144.9,144.1$, 142.1, 142.0, 140.0, 138.6, 137.4, 133.5, 130.4, 129.9, 129.4, 129.2, $128.92,128.90,128.8,128.7,128.1,127.9,127.7,127.4,126.2$, 125.9, 125.4, 124.9, 101.6, 54.6, 46.5, 45.8, 41.4, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}: 624.2209$; found: 624.2218 .

($4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z$)-9-[1,3-Diphenyl-3-(4-tolylsulfonami-do)allyl]-6-methyl-3-phenyl-9,9a-dihydroindeno[2,1-c]pyran-1(4aH)-one (4b)

White crystals; yield: $242 \mathrm{mg}(0.38 \mathrm{mmol}, 76 \%)$; $\mathrm{mp} 126-128^{\circ} \mathrm{C}$. IR: $3335,1751,1598 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.09$ (s, 1 H), 7.69 (d, $J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52-7.55$ (m, 2 H), 7.52 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (t, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.16$ (br $\mathrm{s}, 3 \mathrm{H}), 7.12$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=10.8,1 \mathrm{H})$, $4.17(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=8.6,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.28$ (s, 3 H), 2.25 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=171.1,148.8,145.0,144.1$, $142.2,140.0,139.0,138.6,138.5,137.4,133.6,130.4,129.9,129.4$, 129.1, 128.9, 128.87, 128.73, 128.65, 128.2, 127.7, 127.4, 125.9, 125.8, 125.4, 125.3, 101.7, 54.3, 46.8, 45.8, 41.3, 21.5, 21.3.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S}: 638.2365$; found: 638.2368 .
(4aS $\left.{ }^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1 R^{*}, Z\right)-9-[1,3-D i p h e n y l-3-(4-t o l y l s u l f o n a m i-$ do)allyl]-6-methoxy-3-phenyl-9,9a-dihydroindeno [2,1-c]pyran-1(4aH)-one (4c)
White crystals; yield: $284 \mathrm{mg}(0.42 \mathrm{mmol}, 84 \%)$; mp $166-167^{\circ} \mathrm{C}$. IR: $3298,1751,1614,1593 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$): $\delta=8.08(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.56$ (m, 2 H), 7.52 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.44 (t, $J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.32$ (m, 6 H$), 7.16$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (dd, $J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (d, $J=5.0 \mathrm{~Hz}, 1$ H), $5.99(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=$ $8.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, $J=10.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3 H), 3.15 (dd, $J=8.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=171.1,161.0,148.9,146.4$, 144.1, 142.2, 140.0, 138.6, 137.4, 133.64, 133.58, 130.4, 129.9, 129.4, 129.1, 128.9, 128.7, 128.2, 127.7, 127.4, 126.8, 125.9, 125.4, 114.0, 110.0, 101.6, 55.7, 54.0, 47.0, 46.0, 41.6, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{SNa}: 676.2128$; found: 676.2145.
($4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z$)-9-[1,3-Diphenyl-3-(4-tolylsulfonami-do)allyl]-6-fluoro-3-phenyl-9,9a-dihydroindeno [2,1-c]pyran-1(4aH)-one (4d)
White crystals; yield: 225 mg ($0.35 \mathrm{mmol}, 69 \%$); mp $136-138^{\circ} \mathrm{C}$. IR: $3189,1732,1595 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $-d_{6}$): $\delta=8.17(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51-7.52$ (m, 4 H), 7.39-7.45 (m, 3 H), 7.27-7.30 (m, 6 H), 7.18 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13 (d, $J=7.9 \mathrm{~Hz}, 3 \mathrm{H}$), 6.89 (br s, 2 H), $6.25(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=7.4,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=170.6,164.9,162.5,149.3$, $147.5,147.4,144.1,142.0,139.9,138.7,137.9,137.3,133.5,130.3$, 130.0, 129.4, 129.2, 128.9, 128.8, 128.7, 128.1, 127.7, 127.6, 127.5, $126.1,125.5,114.9,114.6,111.9,111.6,100.8,54.1,46.8,46.1$, 41.4, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{FNO}_{4} \mathrm{~S}: ~ 642.2114$; found: 642.2102.
$\left(4 a S^{*}, 9 S^{*}, 9 a^{*}, 1^{\prime} R^{*}, Z\right)-9-[1,3-D i p h e n y l-3-(4-t o l y l s u l f o n a m i-$ do)allyl]-3-(4-methylphenyl)-9,9a-dihydroindeno[2,1-c]pyran-1(4aH)-one (4e)
White crystals; yield: 249 mg ($0.39 \mathrm{mmol}, 78 \%$); mp 185-187 ${ }^{\circ} \mathrm{C}$. IR: 3162, 1727, $1601 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.11(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.28(\mathrm{~m}, 6$ H), 7.17 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (d, $J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.01 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.22(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.14(\mathrm{dd}, J=8.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,149.0,145.0,144.1$, $142.1,142.0,140.0,139.9,138.7,137.4,130.8,130.4,130.0,129.2$, $128.9,128.8,128.7,128.2,127.8,127.7,127.4,126.2,125.9,125.4$, 124.8, 100.6, 54.7, 46.5, 45.9, 41.4, 21.5, 21.2.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S}: 638.2365$; found: 638.2371.
(4a $\left.S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[1,3-D i p h e n y l-3-(4-t o l y l s u l f o n a m i-$ do)allyl]-3-(4-methoxyphenyl)-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4f)
White crystals; yield: $235 \mathrm{mg}(0.36 \mathrm{mmol}, 72 \%) ; \mathrm{mp} 180-181^{\circ} \mathrm{C}$. IR: $3238,1746,1604 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=8.11(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.34$ $(\mathrm{m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.07(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=8.7$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=171.2,161.4,148.9,145.1$, $144.1,142.1,142.0,140.0,138.7,137.4,130.4,129.1,128.92$, $128.86,128.79,128.72,128.1,127.8,127.7,127.4,126.9,126.2$, $126.0,125.9,124.8,114.8,99.5,55.7,54.6,46.6,45.9,41.4,21.5$.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}: 654.2314$; found: 654.2312 .
(4aS* $\left.9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)$-3-(4-Bromophenyl)-9-[1,3-diphenyl-3-(4-tolylsulfonamido)allyl]-9,9a-dihydroindeno[2,1-c]pyran$1(4 a H)$-one (4 g)
White crystals; yield: $246 \mathrm{mg}(0.35 \mathrm{mmol}, 70 \%) ; \mathrm{mp} 206-208^{\circ} \mathrm{C}$. IR: 3162, 1735, $1598 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta=8.09(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.35$ $(\mathrm{m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.86$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=8.1$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=170.8,148.0,144.6,144.1$, $142.1,142.0,139.9,138.7,137.4,132.8,132.5,130.4,129.2$, $128.92,128.86,128.7,128.1,127.9,127.7,127.4,127.3,126.3$, 126.0, 124.8, 123.4, 102.4, 54.7, 46.4, 45.9, 41.5, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{BrNO}_{4} \mathrm{~S}: 702.1314$; found: 702.1309.
(4a $\left.S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[1-(4-M e t h y l p h e n y l)-3-p h e n y l-3-(4-$ tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4h)
White crystals; yield: $229 \mathrm{mg}(0.36 \mathrm{mmol}, 71 \%) ; \mathrm{mp} 146-147{ }^{\circ} \mathrm{C}$. IR: $3347,3282,1749,1598 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.13(\mathrm{~m}, 3 \mathrm{H})$, 7.09 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (t, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (dd, $J=8.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (dd, $J=$ $10.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,148.9,144.8,144.1$, $142.1,140.0,139.1,138.6,137.3,136.8,133.6,130.3,129.9,129.8$, $129.4,128.9,128.8,128.7,128.1,127.8,127.7,126.2,126.1,125.4$, 124.9, 101.7, 54.6, 46.5, 45.4, 41.4, 21.5, 21.1.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S}: 638.2365$; found: 638.2371 .
(4aS*, $\left.9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[1-(4-M e t h o x y p h e n y l)-3-p h e n y l-3-(4-$ tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4i)
White crystals; yield: 235 mg ($0.36 \mathrm{mmol}, 71 \%$); mp $149-151^{\circ} \mathrm{C}$. IR: $3281,1745,1609 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right): \delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 4 \mathrm{H})$, $7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (dd, $J=10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,159.4,148.9,144.8$, 144.1, 142.2, 140.0, 138.7, 137.2, 133.9, 133.6, 130.4, 129.9, 129.4, $128.8,128.78,128.72,128.1,127.9,127.7,126.3,126.2,125.4$, $124.8,114.5,101.7,55.5,54.7,46.4,45.1,41.4,21.5$.
HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}: 654.2314$; found: 654.2310.
(4aS* $\left.{ }^{*} 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[1-(4-B r o m o p h e n y l)-3-p h e n y l-3-(4-$ tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4j)
White crystals; yield: $245 \mathrm{mg}(0.35 \mathrm{mmol}, 70 \%) ; \mathrm{mp} 164-165{ }^{\circ} \mathrm{C}$. IR: $3278,1744,1598 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-$ $7.45(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-$ $7.14(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.99(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.21(\mathrm{dd}, J=8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,148.9,144.9,144.2$, 141.7, 141.6, 139.8, 138.6, 137.9, 133.5, 132.1, 131.0, 130.3, 129.9, $129.4,129.0,128.9,128.7,128.2,128.0,127.7,126.1,125.4,125.2$, $124.9,120.9,101.6,54.5,46.5,45.3,41.5,21.5$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{BrNO}_{4} \mathrm{~S} 702.1314$; found: 702.1309.
($3 S^{*}, 3 \mathrm{aS} S^{*}, 8 R^{*}, 8 \mathrm{a} S^{*}, Z$)-8-(Benzoylmethyl)-3-(4-bromophenyl)-2-[phenyl(4-tolylsulfonamido)methylene]-3,3a,8,8a-tetrahydrocyclopenta $[a]$ inden $-1(2 H)$-one (5 j)
White crystals; yield: $70 \mathrm{mg}(0.1 \mathrm{mmol}, 19 \%) ; \mathrm{mp} 125-126^{\circ} \mathrm{C}$.
IR: 3436, 1687, 1650, $1570 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.44(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.25$ (m, 3 H), $7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.71-6.74(\mathrm{~m}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1$ H), $4.78(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.14(\mathrm{~m}$, $2 \mathrm{H}), 3.85(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3$ H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=210.2,199.4,147.0,145.1$, $141.8,141.2,138.8,138.1,133.6,133.1,132.6,132.1,130.8,130.3$, $130.26,130.0,129.5,128.9,128.2,128.1,128.0,127.7,126.6$, 123.7, 120.5, 119.9, 54.6, 49.2, 48.5, 42.1, 39.9, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{BrNO}_{4} \mathrm{~S}$: 702.1314; found: 702.1304.
($\left.4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)$-9-[1-(3-Methoxyphenyl)-3-phenyl-3-(4-tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4k)
White crystals; yield: $261 \mathrm{mg}(0.4 \mathrm{mmol}, 79 \%) ; \mathrm{mp} \mathrm{191-192}{ }^{\circ} \mathrm{C}$.
IR: $3255,1747,1606 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.06$ (s, 1 H), 7.69 (d, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.39-$ 7.45 (m, 3 H), $7.31-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1$ H), $3.98-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.25 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=170.1,159.6,148.0,144.0$, 143.2, 142.7, 141.3, 139.0, 137.8, 136.4, 132.7, 129.4, 129.2, 128.9, $128.5,128.0,127.8,127.2,127.0,126.8,125.4,124.5,123.9,120.1$, 113.8, 112.1, 100.7, 54.5, 53.7, 45.5, 45.1, 40.5, 20.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}: 654.2314$; found: 654.2313.
($4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} \mathbf{R}^{*}, Z$)-9-[1-(2-Methoxyphenyl)-3-phenyl-3-(4-tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4l)
White crystals; yield: 209 mg ($0.32 \mathrm{mmol}, 63 \%$); mp 204-206 ${ }^{\circ} \mathrm{C}$. IR: $3203,1735,1600 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$): $\delta=7.97(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.37(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30-7.33$ (m, 4 H), 7.27 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (t, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1$ H), $4.35(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ (dd, $J=10.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (s, 3 H), 2.97 (dd, $J=8.4,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=169.8,156.2,147.2,143.7$, $142.3,141.3,138.9,137.4,134.8,132.1,129.7,129.0,128.6,128.2$, 127.8 , 127.7, 127.4, 126.6, 126.5, 126.0, 125.96, 125.5, 124.2, $123.5,120.0,110.9,100.8,55.3,51.7,45.9,40.0,39.0,21.0$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}: 654.2314$; found: 654.2327.
($\left.4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[3-(4-M e t h y l p h e n y l)-1-p h e n y l-3-(4-$ tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4m)
White crystals; yield: 236 mg ($0.37 \mathrm{mmol}, 74 \%$); mp $168-169^{\circ} \mathrm{C}$. IR: $3268,1734,1600 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22-7.28 (m, 4 H), 7.15 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.09-$ $7.13(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.94 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=$ $8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (dd, $J=11.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=8.7$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (s, 3 H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=171.1,148.9,144.9,144.1$, 142.2, 138.7, 137.41, 137.38, 137.1, 133.6, 130.4, 129.9, 129.4, 129.1, 128.9, 128.8, 128.1, 127.8, 127.7, 127.4, 126.2, 125.4, 124.8, 124.7, 101.6, 54.7, 46.6, 45.8, 41.4, 21.5, 21.1.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S}: 638.2565$; found: 638.2371.
($\left.4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{aS} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[3-(4-M e t h o x y p h e n y l)-1-p h e n y l-3-(4-$ tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (4n)
White crystals; yield: $229 \mathrm{mg}(0.35 \mathrm{mmol}, 70 \%) ; \mathrm{mp} 176-177^{\circ} \mathrm{C}$. IR: $3173,1737,1605 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=8.02(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.50$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.47$ (m, 5 H), 7.35 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.83 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H})$,
4.02 (dd, $J=10.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (s, 3 H), 3.15 (dd, $J=8.6,4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.24$ (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$): $\delta=171.1,160.8,148.9,144.9$, $144.1,142.3,142.0,138.7,137.2,133.6,132.2,130.3,129.9$, $129.43,129.41,129.1,128.9,128.8,127.8,127.7,127.3,126.2$, 125.4, 124.8, 123.7, 114.1, 101.7, 55.6, 54.7, 46.6, 45.8, 41.5, 21.5.

HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}: 654.2314$; found: 654.2311.
($4 \mathrm{a} S^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1 R^{*}, Z$)-9-[-(4-Bromophenyl)-1-phenyl-3-(4-tolylsulfonamido)allyl]-3-phenyl-9,9a-dihydroindeno[2,1-c]py-ran-1(4aH)-one (40)
White crystals; yield: 259 mg ($0.37 \mathrm{mmol}, 74 \%$); $\mathrm{mp} 183-185{ }^{\circ} \mathrm{C}$. IR: 3441, 1728, 1633, $1595 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone $-d_{6}$): $\delta=8.19(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51$ (d, $J=9.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45 (br s, 4 H), 7.44 (t, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ 7.27 (m, 4 H), $7.12-7.15$ (m, 5 H), 6.86 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (d, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.09 (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.20(\mathrm{t}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{dd}, J=8.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3$ H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=171.0,148.9,144.8,144.3$, $141.9,141.8,139.3,138.4,136.3,133.5,131.8,130.5,130.1,129.9$, $129.4,129.2,128.9,128.86,127.9,127.7,127.5,126.7,126.2$, $125.4,124.9,122.4,101.6,54.6,46.4,45.9,41.4,21.5$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{BrNO}_{4} \mathrm{~S}: 702.1314$; found: 702.1310.

Methyl ($\left.1 S^{*}, 2 R^{*}, 3 S^{*}, 1 R^{*}, Z\right)$-1-(Benzoylmethyl)-3-[1,3-diphe-nyl-3-(4-tolylsulfonamido)allyl|indane-2-carboxylate (14)
Indeno[$2,1-c$] pyran-1-one $\mathbf{4 a}(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ at r.t. The mixture was heated under reflux for about 30 min until $\mathbf{4 a}$ had been consumed. After removal of the solvent under vacuum, the residue was rapidly purified by column chromatography (silica gel, petroleum ether-EtOAc, 5:1) to give 14 as white crystals; yield: $85 \mathrm{mg}(0.13 \mathrm{mmol}, 82 \%) ; \mathrm{mp} 90-91^{\circ} \mathrm{C}$.
IR: 3339, 3271, 1723, $1682 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, acetone $\left.-d_{6}\right): \delta=7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2$ H), 7.44-7.48 (m, 4 H), 7.12-7.28 (m, 11 H$), 7.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2$ H), 7.05 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.03 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01$ (dd, $J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=14.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.29(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}): $\delta=198.8,174.8,145.9,144.1$, $144.0,143.8,142.4,140.0,139.1,138.2,136.4,133.7,130.4,129.4$, 129.3, 129.1, 128.71, 128.68, 128.13, 128.05, 128.0, 127.7, 127.5, 127.3, 126.1, 124.4, 54.1, 51.8, 51.6, 47.1, 42.0, 41.2, 21.5.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{SNa}$: 678.2285; found: 678.2271 .
$\left(1 S^{*}, 2 R^{*}, 3 S^{*}, 1^{\prime} S^{*}\right)$-1-(Benzoylmethyl)-3-(2-benzoyl-1-phenyl-ethyl)indane-2-carboxylic Acid (15)
At r.t., 30% aq NaOH soln $(80 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added dropwise to a solution of $4 \mathbf{a}(186 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. The mixture was stirred at r.t. for about 1 h until $\mathbf{4 a}$ had been consumed. The mixture was neutralized with sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ to $\mathrm{pH} \sim 6-7$ and it was then stirred for further $5-6 \mathrm{~h}$ at r.t. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \times 3 \mathrm{~mL}$), and the combined extracts were dried (anhyd MgSO_{4}) and concentrated under vacuum. The residue was purified by column chromatography (silica gel, $\mathrm{PE}-\mathrm{EtOH}-\mathrm{EtOAc}, 40: 2: 1$) to give 15 as white crystals; yield: $117 \mathrm{mg}(0.24 \mathrm{mmol}, 80 \%) ; \mathrm{mp}$ $179-180^{\circ} \mathrm{C}$.
IR: $3438,1698,1686,1679 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.09(\mathrm{~m}, 4 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=14.6,7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26$ (dd, $J=15.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=18.0,6.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=198.8,198.5,179.0,144.3,143.4$, $141.2,137.2,136.9,133.1,133.0,128.5,128.33,128.3,128.0$, $127.5,127.1,126.8,125.1,123.4,52.7,50.4,43.6,41.9,40.7,39.8$.
HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}: 511.1880$; found: 511.1867.
(4a $\left.R^{*}, 9 S^{*}, 9 \mathrm{a} S^{*}, 1^{\prime} R^{*}, Z\right)-9-[1,3-D i p h e n y l-3-(4-t o l y l s u l f o n a m i-$ do)allyl]-3-phenyl-1,4a,9,9a-tetrahydroindeno[2,1-c]pyran (16) Under N_{2} atmosphere and at r.t., $\mathrm{LiAlH}_{4}(55 \mathrm{mg}, 1.44 \mathrm{mmol})$ was added to a solution of $\mathbf{4 a}(300 \mathrm{mg}, 0.48 \mathrm{mmol})$ in anhyd THF (10 mL). The mixture was stirred at r.t. for ca. 1 h until $\mathbf{4 a}$ had been consumed. The reaction was quenched by the addition of 2 M aq HCl $(5 \mathrm{~mL})$ under $0{ }^{\circ} \mathrm{C}$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \times 3 \mathrm{~mL})$, the product 16 was isolated by rapid column chromatography (silica gel, PE-EtOAc, 5:1).
White crystals; yield: $207 \mathrm{mg}(0.34 \mathrm{mmol}, 70 \%) ; \mathrm{mp} 108-110{ }^{\circ} \mathrm{C}$. IR: 3341, $3276,1647,1598 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}): $\delta=7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46$ ($\mathrm{s}, 1 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.6,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ $(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 1 \mathrm{H})$, 2.24 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, acetone- d_{6}): $\delta=153.0,147.9,144.1,143.0$, $142.5,140.0,139.0,136.6,136.2,130.4,129.1,128.9,128.8$, $128.72,128.67,128.4,128.0,127.9,127.7,127.2,127.1,125.32$, 125.27, 99.7, 68.1, 53.7, 47.9, 40.84, 40.8, 21.5.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{~S}: 610.2410$; found: 610.2394 .

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 21172021) and the Beijing Municipal Commission of Education.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis. Included are copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of products $\mathbf{4}, \mathbf{5 j}, \mathbf{1 4}$, $\mathbf{1 5}, \mathbf{1 6}$, and the HPLC spectra of $\mathbf{4 a}$.

References

(1) Numao, N.; Hirota, Y.; Iwahori, A.; Kidokoro, S.; Sasatsu, M.; Kondo, I.; Itoh, S.; Itoh, E.; Katoh, T.; Shimozono, N.; Yamazaki, A.; Takao, K.; Kobayashi, S. Biol. Pharm. Bull. 1999, 22, 73.
(2) Pal, R. K.; Yasmin, H.; Nahar, L.; Datta, B. K.; Chowdhury, A. K. A.; Kundu, J. K.; Bachar, S. C.; Sarker, S. D. Med. Chem. 2012, 8, 874.
(3) LaLonde, J. M.; Le-Khac, M.; Jones, D. M.; Courter, J. R.; Park, J.; Schon, A.; Princiotto, A. M.; Wu, X.; Mascola, J. R.; Freire, E.; Sodroski, J.; Madani, N.; Hendrickson, W. A.; Smith, A. B. III ACS Med. Chem. Lett. 2013, 4, 338.
(4) Akincioglu, A.; Akbaba, Y.; Gocer, H.; Goksu, S.; Gulcin, I.; Supuran, C. T. Bioorg. Med. Chem. 2013, 21, 1379.
(5) Seki, M.; Tsuruta, O.; Aoyama, Y.; Soejima, A.; Shimada, H.; Nonaka, H. Chem. Pharm. Bull. 2012, 60, 488.
(6) Shiohara, H.; Nakamura, T.; Kikuchi, N.; Ozawa, T.; Nagano, R.; Matsuzawa, A.; Ohnota, H.; Miyamoto, T.; Ichikawa, K.; Hashizume, K. Bioorg. Med. Chem. 2012, 20, 3622.
(7) Hu, H.; Hollinshead, S. P.; Hall, S. E.; Kalter, K.; Ballas, L. M. Bioorg. Med. Chem. Lett. 1996, 6, 973.
(8) Some examples: (a) Horwell, D. C.; Howson, W.; Ratcliffe, G.; Willems, H. Bioorg. Med. Chem. Lett. 1994, 4, 2825.
(b) Saravanan, V. S.; Selvan, P. S.; Gopal, N.; Gupta, J. K. Asian J. Chem. 2006, 18, 2597. (c) Yuan, H.; Hu, J.; Gong, Y. Tetrahedron: Asymmetry 2013, 24, 699. (d) Grafton, M. W.; Farrugia, L. J.; Sutherland, A. J. Org. Chem. 2013, 78, 7199. (e) Kim, K. H.; Kim, S. H.; Park, S.; Kim, J. N. Tetrahedron 2011, 67, 3328. (f) Giorgi, G.; Arroyo, F. J.; Lopez-Alvarado, P.; Menendez, J. C. Synlett 2010, 2465. (g) Sheridan, H.; Walsh, J. J.; Jordan, M.; Cogan, C.; Frankish, N. Eur. J. Med. Chem. 2009, 44, 5018.
(9) Grossmann, A.; Enders, D. Angew. Chem. Int. Ed. 2012, 51, 314.
(10) (a) Wu, K.-J.; Li, G.-Q.; Li, Y.; Dai, L.-X.; You, S.-L. Chem. Comтип. 2011, 47, 493. (b) Sun, F.-G.; Ye, S. Org. Biomol. Chem. 2011, 9, 3632. (c) Sun, F.-G.; Ye, S. Synlett 2011, 47, 1005. (d) Sánchez-Larios, E.; Gravel, M. J. Org. Chem. 2009, 74, 7536. (e) Sánchez-Larios, E.; Holmes, J. M.; Daschner, C. L.; Gravel, M. Org. Lett. 2010, 12, 5772. (f) Cheng, Y.; Peng, J.-H.; Li, Y.-J.; Shi, X.-Y.; Tang, M.-S.; Tan, T.-Y. J. Org. Chem. 2011, 76, 1844.
(11) (a) Li, Y.; Wang, X.-Q.; Zheng, C.; You, S.-L. Chem. Commun. 2009, 5823. (b) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem. Int. Ed. 2007, 46, 3107. (c) Biswas, A.; De Sarkar, S.; Frohlich, R.; Studer, A. Org. Lett. 2011, 13, 4966.
(12) (a) Fan, X.-W.; Cheng, Y. Org. Biomol. Chem. 2012, 10, 9079. (b) Sun, Z.-X.; Cheng, Y. Eur. J. Org. Chem. 2012, 4982. (c) Sun, Z.-X.; Cheng, Y. Org. Biomol. Chem. 2012, 10, 4088. (d) Qu, J.; Cheng, Y. Tetrahedron 2013, 69, 888.
(13) CCDC 956769 and 956770 ($\mathbf{4 a}$ and $\mathbf{5 j}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
(14) Yang, J. W.; Fonseca, M. T. H.; List, B. J. Am. Chem. Soc. 2005, 127, 15036.
(15) (a) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2007, 129, 1480. (b) Esquivias, J.; Arrayás, R. G.; Carretero, J. C. J. Org. Chem. 2005, 70, 7451.
(16) Kerr, M. S.; de Alaniz, J. R.; Rovis, T. J. Org. Chem. 2005, 70, 5725.

[^0]: ${ }^{\text {a }}$ The enal 1a was not totally consumed.
 ${ }^{\mathrm{b}}$ Not found.

[^1]: ${ }^{a}$ The isolated yields.
 ${ }^{\mathrm{b}}$ The yields of $\mathbf{4}$ and 5 were calculated based on the ratios of $\mathbf{4} / \mathbf{5}$ and the total yields of products.
 ${ }^{\mathrm{c}}$ Except $\mathbf{5} \mathbf{j}$, other minor products 5 were not isolated and characterized.
 ${ }^{d}$ The ratios of $\mathbf{4} / 5$ were detected by ${ }^{1} \mathrm{H}$ NMR on the crude products.

