Synlett 2013; 24(10): 1255-1259
DOI: 10.1055/s-0033-1338848
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Novel N-Heterocyclic Carbene-Oxazoline Palladium Complexes and Their Applications in Suzuki–Miyaura Cross-Coupling Reaction

Peng Gu
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China
,
Qin Xu*
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China
,
Min Shi*
a   Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: mshi@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 18 April 2013

Accepted after revision: 02 May 2013

Publication Date:
17 May 2013 (online)


Abstract

A series of novel N-heterocyclic carbene-oxazoline ligands were synthesized in six steps. Palladium complexes were obtained by deprotonation of the benzimidazole salts and subsequent ligation with Pd(OAc)2 in THF. Different types of cyclic bis- and tetrapalladium complexes were achieved by modifying substituent of oxazoline group. The structures of these palladium complexes were characterized by NMR and X-ray diffraction analysis. Catalytic properties of these Pd-complexes were tested by Suzuki–Miyaura cross-coupling reaction.

Supporting Information

 
  • References and Notes

    • 1a Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 1b Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 913
    • 2a Lee MT, Hu CH. Organometallics 2004; 23: 976
    • 2b Huang J, Jafarpour L, Hillier AC, Stevens ED, Nolan SP. Organometallics 2001; 20: 2878
    • 3a Herrmann WA, Öfele K, von Preysing D, Schneider SK. J. Organomet. Chem. 2003; 687: 229
    • 3b Farina V. Adv. Synth. Catal. 2004; 346: 1553
    • 3c Kantchev EA. B, O’Brien CJ, Organ MG. Aldrichimica Acta 2006; 39: 97
    • 3d Xu Q, Duan WL, Lei ZY, Zhu ZB, Shi M. Tetrahedron 2005; 61: 11225
    • 3e Xu Q, Zhang R, Zhang T, Shi M. J. Org. Chem. 2010; 75: 3935
    • 3f Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
    • 3g Marion N, Nolan SP. Acc. Chem. Res. 2008; 41: 1440
    • 4a Duan WL, Shi M, Rong GB. Chem. Commun. 2003; 2916
    • 4b Xu Q, Gu X, Liu S, Dou Q, Shi M. J. Org. Chem. 2007; 72: 2240
    • 4c Gil W, Trzeciak AM. Coord. Chem. Rev. 2011; 255: 473
    • 4d Lowry RJ, Veige MK, Clement O, Abboud KA, Ghiviriga I, Veige AS. Organometallics 2008; 27: 5184
    • 4e Praetorius JM, Crudden CM. Dalton, Trans. 2008; 4079
    • 4f Monney A, Albrecht M. Chem. Commun. 2012; 10960
    • 4g Choi SY, Chung YK. Adv. Synth. Catal. 2011; 353: 2609
    • 5a Seiders TJ, Ward DW, Grubbs RH. Org. Lett. 2001; 3: 3225
    • 5b Stewart IC, Douglas CJ, Grubbs RH. Org. Lett. 2008; 10: 441
    • 5c Kuhn KM, Bourg JB, Chung CK, Virgil SC, Grubbs RH. J. Am. Chem. Soc. 2009; 131: 5313
    • 5d Gillingham DG, Hoveyda AH. Angew. Chem. Int. Ed. 2007; 46: 3860
    • 5e Correa A, Cavallo L. J. Am. Chem. Soc. 2006; 128: 13352
    • 5f Van V JJ, Campbell JE, Giudici RE, Hoveyda AH. J. Am. Chem. Soc. 2005; 127: 6877
    • 5g Dragutan V, Dragutan I, Delaude L, Demonceau A. Coord. Chem. Rev. 2007; 251: 765
    • 6a Perry MC, Cui XH, Powell MT, Hou DR, Reiben-Spies JH, Burgess K. J. Am. Chem. Soc. 2003; 125: 113
    • 6b Kelly RA. III, Clavier H, Giudice S, Scott NM, Stevens ED, Bordner J, Samardjiev I, Hoff CD, Cavallo L, Nolan SP. Organometallics 2008; 27: 202
    • 6c Herrmann WA, Schuetz J, Frey GD, Herdtweck E. Organometallics 2006; 25: 2437
    • 6d Scott NM, Dorta R, Stevens ED, Correa A, Cavallo L, Nolan SP. J. Am. Chem. Soc. 2005; 127: 3516
    • 6e Corberan R, Sanau M, Peris E. J. Am. Chem. Soc. 2006; 128: 3974
    • 7a Boogaerts II. F, Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
    • 7b Cavarzan A, Scarso A, Sgarbossa P, Strukul G, Reek JN. H. J. Am. Chem. Soc. 2011; 133: 2848
    • 7c Brown TJ, Dickens MG, Widenhoefer RA. J. Am. Chem. Soc. 2009; 131: 6350
    • 7d de Fremont P, Marion N, Nolan SP. J. Organomet. Chem. 2009; 694: 551
    • 7e Zuccaccia D, Belpassi L, Tarantelli F, Macchioni A. J. Am. Chem. Soc. 2009; 131: 3170
    • 8a Bugaut X, Liu F, Glorius F. J. Am. Chem. Soc. 2011; 133: 8130
    • 8b Dabrowski JA, Gao F, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 4778
    • 8c Xiao YP, Liu XY, Che CM. Angew. Chem. Int. Ed. 2011; 50: 4937
    • 9a Navarro O, Kelly RA. III, Nolan SP. J. Am. Chem. Soc. 2003; 125: 16194
    • 9b Chartoire A, Lesieur M, Falivene L, Slawin AM. Z, Cavallo L, Cazin CS. J, Nolan SP. Chem. Eur. J. 2012; 18: 4517
    • 9c Hoi KH, Coggan JA, Organ MG. Chem. Eur. J. 2013; 19: 843
    • 9d Sayah M, Lough AJ, Organ MG. Chem. Eur. J. 2013; 19: 2749
    • 9e Pompeo M, Froese RD. J, Hadei N, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 11354
  • 10 Lehn JM, Rigault A, Sigel J, Harrowfield J, Chevrier B, Moras D. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2565
  • 11 Caulder DN, Raymond KN. Acc. Chem. Res. 1999; 32: 975
    • 12a Fujita M, Yazaki J, Ogura K. J. Am. Chem. Soc. 1990; 112: 5645
    • 12b Fujita M, Tominaga M, Hori A, Therrien B. Acc. Chem. Res. 2005; 38: 371
    • 13a Olenyuk B, Whiteford JA, Stang PJ. J. Am. Chem. Soc. 1996; 118: 8221
    • 13b Stang PJ, Olenyuk B, Fan J, Arif AM. Organometallics 1996; 15: 904
    • 13c Stang PJ, Cao DH, Chen K, Gray GM, Muddiman DC, Smith RD. J. Am. Chem. Soc. 1997; 119: 5163
    • 13d Stang PJ, Fan J, Olenyuk B. Chem. Commun. 1997; 1453
    • 13e Stang PJ, Persky NE. Chem. Commun. 1997; 77
    • 13f Stang PJ, Olenyuk B. Acc. Chem. Res. 1997; 30: 502
    • 14a Lee SB, Hwang S, Chung DS, Yun H, Hong J.-I. Tetrahedron Lett. 1998; 39: 873
    • 14b Ikeda A, Yoshimura M, Udzu H, Fukuhara C, Shinkai S. J. Am. Chem. Soc. 1999; 121: 4296
    • 14c Lahav M, Gabai R, Shipway AN, Willner I. Chem. Commun. 1999; 1937
    • 14d Be’langer S, Hupp JT, Stern CL, Slone RV, Watson DF, Carell TG. J. Am. Chem. Soc. 1999; 121: 557
    • 14e Lau VC, Berben LA, Long JR. J. Am. Chem. Soc. 2002; 124: 9042
    • 14f Gosh S, Mukherjee PS. J. Org. Chem. 2006; 71: 8412
    • 14g Caskey DC, Yamamoto T, Addicott C, Shoemaker RK, Vacek J, Hawkridge AM, Muddiman DC, Kottas GS, Michl J, Stang PJ. J. Am. Chem. Soc. 2008; 130: 7620
    • 15a Hahn FE, Radloff C, Pape T, Hepp A. Organometallics 2008; 27: 6408
    • 15b Radloff C, Weigand JJ, Hahn FE. Dalton Trans. 2009; 9392
  • 16 Schmidtendorf M, Pape T, Hahn FE. Angew. Chem. Int. Ed. 2012; 51: 2195
  • 17 Wang FJ, Li SK, Qu ML, Zhao MX, Liu LJ, Shi M. Chem. Commun. 2011; 12813
  • 18 Liu Z, Zhang T, Shi M. Organometallics 2008; 27: 2668
  • 19 General Procedure of the NHC-Pd Catalyzed Suzuki–Miyaura Cross-Coupling Reaction: NHC-Pd (1.25 or 2.5 μmol, 1 mol% Pd), aryl halide (0.5 mmol, 1 equiv), arylboronic aid (0.6 mmol, 1.2 equiv), potassium tert-butoxide (0.75 mmol, 1.5 equiv) were added into a tube under argon, and the solvent i-PrOH (2 mL) was added into the tube via a syringe. The mixture was stirred for 16 h at 80 °C. After the reaction completed, H2O was added to the mixture, and the aqueous phase was extracted with EtOAc (3 ×). The combined organic solvent was dried over anhyd Na2SO4 and removed in vacuo. The residue was purified by flash column chromatography on silica gel column with petroleum ether as an eluent to give the desired biaryl products 8 in good to excellent yields.