E. P. A. TALBOT,\* T. DE A. FERNANDES, J. M. MCKENNA,\* F. D. TOSTE\* (NOVARTIS INSTITUTES FOR BIOMEDICAL RESEARCH, HORSHAM, UK; UNIVERSITY OF CALIFORNIA, BERKELEY, USA)

Asymmetric Palladium-Catalyzed Directed Intermolecular Fluoroarylation of Styrens *J. Am. Chem. Soc.* **2014**, *136*, 4101–4104.

# **Enantioselective Fluoroarylation Catalyzed by Palladium**

# Pd(OAc)<sub>2</sub>/ligand (15 mol%) (2-ethylhexylO)<sub>2</sub>PO<sub>2</sub>H (30 mol%) Selectfluor (2 equiv) tert-butylcatechol CH<sub>2</sub>Cl<sub>2</sub>-H<sub>2</sub>O (5:1), r.t., 15 h Ar ligand

### Selected examples:

# Possible reaction pathway:

**Significance:** The authors developed a highly enantioselective palladium-catalyzed fluoroarylation of styrenes bearing an amide-based directing group. The proposed reaction mechanism involves a palladium(IV) intermediate as shown above.

**SYNFACTS Contributors:** Hisashi Yamamoto, Yasushi Shimoda Synfacts 2014, 10(6), 0617 Published online: 16.05.2014 **DOI:** 10.1055/s-0033-1339002; **Reg-No.:** H05214SF

**Comment:** In this reaction, N,N-ligands play a crucial role to afford the fluoroarylated products. Without these ligands only Heck products were obtained. Organic phosphate was added as phase-transfer catalyst to increase the chemical yield.

# Category

Metal-Catalyzed Asymmetric Synthesis and Stereoselective Reactions

# **Key words**

fluoroarylation styrenes palladium



617