Adhesive Immobilization of Polymer-Stabilized Pd Nanoparticles on Cellulose

Significance: Adhesive immobilization of palladium nanoparticles on cellulose using hyperbranched polystyrene [Pd@HPS-N(C_{12}H_{25})_3Cl on cellulose] was developed. The catalyst promoted efficiently the Suzuki–Miyaura coupling, the Mizoroki–Heck reaction, the intramolecular C–H bond arylation, and the hydrogenation. The catalyst was recycled by a tweezers and reused several times.

Comment: The catalyst was prepared as follows: A reaction of the hyperbranched polystyrenes having tri(dodecyl)ammonium chloride moieties [HPS-N(C_{12}H_{25})_3Cl] with Pd_2(dba)_3 was carried out to give the polymer-supported palladium nanoparticles Pd@HPS-N(C_{12}H_{25})_3Cl. The resulting nanocomposite Pd@HPS-N(C_{12}H_{25})_3Cl was treated with KI and filter paper (or cotton) as cellulose to afford Pd@HPS-N(C_{12}H_{25})_3Cl on cellulose.

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Takuma Sato

SYNfacts 2014, 10(6), 0649 Published online: 16.05.2014
DOI: 10.1055/s-0033-1339093; Reg-No.: Y04714SF