Synlett 2013; 24(13): 1671-1674
DOI: 10.1055/s-0033-1339308
letter
© Georg Thieme Verlag Stuttgart · New York

NHC-Catalyzed Annulation of Enals to 2,4-Dien-1-ones: Efficient Diastereoselective Synthesis of 1,3-Diaryl-4-styrenyl Cyclopentenes

C. R. Sinu
Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: Vijaynair_2001@yahoo.com
,
D. V. M. Padmaja
Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: Vijaynair_2001@yahoo.com
,
P. Jini
Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: Vijaynair_2001@yahoo.com
,
K. C. Seetha Lakshmi
Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: Vijaynair_2001@yahoo.com
,
V. Nair*
Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019, India   Fax: +91(471)2491712   Email: Vijaynair_2001@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 10 May 2013

Accepted after revision: 01 June 2013

Publication Date:
17 July 2013 (online)


Abstract

Nucleophilic heterocyclic carbene (NHC)-catalyzed ­annulation strategy has been utilized for the efficient synthesis of styrenyl-substituted cyclopentenes from 2,4-dienones.

Supporting Information

 
  • References and Notes

    • 1a Pellissier H. Tetrahedron 2007; 63: 9267
    • 1b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 1c MacMillan DW. C. Nature (London) 2008; 455: 304
  • 2 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 3a Stetter H, Schreckenberg M. Angew. Chem., Int. Ed. Engl. 1973; 12: 81
    • 3b Stetter H. Angew. Chem., Int. Ed. Engl. 1976; 15: 639

      For reviews on NHC-catalyzed reactions, see:
    • 4a Christmann M. Angew. Chem. Int. Ed. 2005; 44: 2632
    • 4b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 4c Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 4d Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 4e Moore JL, Rovis T. Top. Curr. Chem. 2011; 291: 77
    • 4f Phillips EM, Chan A, Scheidt KA. Aldrichimica Acta 2009; 42: 55
    • 4g Chiang P.-C, Bode JW In N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient Synthetic Tools . The Royal Society of Chemistry; Cambridge: 2011: 399
  • 5 Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
  • 6 Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
    • 8a He M, Bode JW. Org. Lett. 2005; 7: 3131
    • 8b Zhang B, Feng P, Sun L.-H, Cui Y, Ye S, Jiao N. Chem. Eur. J. 2012; 18: 9198
    • 9a Nair V, Vellalath S, Poonoth M, Suresh E. J. Am. Chem. Soc. 2006; 128: 8736
    • 9b Chiang P.-C, Kaeobamrung J, Bode JW. J. Am. Chem. Soc. 2007; 129: 3520
    • 9c Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 10098
    • 9d Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
    • 9e Cohen DT, Cardinal-David B, Roberts JM, Sarjeant AA, Scheidt KA. Org. Lett. 2011; 13: 1068
    • 9f Nair V, Paul RR, Padmaja DV. M, Aiswarya N, Sinu CR, Jose A. Tetrahedron 2011; 67: 9885
    • 9g Paul RR, Lakshmi KC. S, Suresh E, Nair V. Tetrahedron Lett. 2013; 54: 2046
  • 10 Chan A, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2740
  • 11 Nair V, Babu BP, Vellalath S, Varghese V, Raveendran AE, Suresh E. Org. Lett. 2009; 11: 2507
    • 12a Nair V, Sinu CR, Babu BP, Varghese V, Jose A, Suresh E. Org. Lett. 2009; 11: 5570
    • 12b Maji B, Ji L, Wang S, Vedachalam S, Ganguly R, Liu X.-W. Angew. Chem. Int. Ed. 2012; 51: 8276
    • 13a Nair V, Varghese V, Babu BP, Sinu CR, Suresh E. Org. Biomol. Chem. 2010; 8: 761
    • 13b He M, Bode JW. J. Am. Chem. Soc. 2008; 130: 418
    • 13c Rommel M, Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2008; 130: 17266
    • 14a Nair V, Poonoth M, Vellalath S, Suresh E, Thirumalai R. J. Org. Chem. 2006; 71: 8964
    • 14b Phillips E, Reynolds T, Scheidt K. J. Am. Chem. Soc. 2008; 130: 2416
    • 14c Seayad J, Patra P, Zhang Y, Ying J. Org. Lett. 2008; 10: 953
    • 14d Yang L, Tan B, Wang F, Zhong G. J. Org. Chem. 2009; 74: 1744
    • 14e Sun L.-H, Shen L.-T, Ye S. Chem. Commun. 2011; 47: 10136
    • 14f Nair V, Babu BP, Vellalath S, Eringathodi Suresh E. Chem. Commun. 2008; 747
    • 14g Nair V, Paul RR, Lakshmi KC. S, Menon RS, Jose A, Sinu CR. Tetrahedron Lett. 2011; 52: 5992
    • 16a Struble J, Bode JW. Tetrahedron 2009; 65: 4957
    • 16b Sinu CR, Padmaja DV. M, Ranjini UP, Seetha Lakshmi KC, Suresh E, Nair V. Org. Lett. 2013; 15: 68

      For theoretical calculations involving DFT studies for the formation of cyclopentenes, see:
    • 17a Domingo L, Zaragozá R, Arnó M. Org. Biomol. Chem. 2010; 8: 4884
    • 17b Verma P, Patni PA, Sunoj RB. J. Org. Chem. 2011; 76: 5606
  • 18 Synthesis of (E)-1-Methoxy-4-(3-phenyl-5-styrylcyclopent-2-enyl)benzene (3a): 1,5-Diphenylpenta-2,4-dien-1-one (117 mg, 0.5 mmol), 4-methoxycinnamaldehyde (162 mg, 1 mmol) and IMesCl (15 mol%) were taken in a 25-mL round-bottom flask. Into this was added anhyd CH2Cl2 (5 mL) followed by DBU (20 mol%) and the reaction mixture was stirred under an inert atmosphere of argon. The completion of the reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was subjected to column chromatography on 100–200 mesh silica gel using EtOAc–hexane (2:98) mixture, affording the styryl cyclopentene 3a (85%) as a colorless liquid. Chemical formula: C26H24O. 1H NMR (500 MHz, CDCl3): δ = 7.49 (d, J = 7.9 Hz, 2 H), 7.34 (t, J = 7.7 Hz, 4 H), 7.27 (dd, J = 13.0, 5.8 Hz, 3 H), 7.18 (t, J = 6.0 Hz, 1 H), 7.15 (d, J = 8.1 Hz, 2 H), 6.83 (d, J = 7.9 Hz, 2 H), 6.40 (dd, J = 15.8, 8.2 Hz, 1 H), 6.28 (d, J = 15.8 Hz, 1 H), 6.19 (s, 1 H), 3.85 (d, J = 7.8 Hz, 1 H), 3.79 (s, 3 H), 3.12 (dd, J = 15.2, 8.2 Hz, 1 H), 2.99 (p, J = 8.0 Hz, 1 H), 2.79 (dd, J = 15.2, 7.8 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 158.3, 142.1, 137.5, 136.5, 136.1, 133.0, 129.8, 128.6, 128.5, 128.5, 128.4, 127.4, 127.0, 126.1, 125.7, 113.9, 57.8, 55.1, 53.2, 39.8.