This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited

Y. YAMASHITA, Y. HIRANO, A. TAKADA, H. TAKIKAWA, K. SUZUKI* (TOKYO INSTITUTE OF TECHNOLOGY, JAPAN)

Total Synthesis of the Antibiotic BE-43472B *Angew. Chem. Int. Ed.* **2013**, *52*, 6658–6661.

Total Synthesis of BE-43472B

Significance: The aromatic polyketide BE-43472B was isolated from a marine *Streptomyces* species and was shown to exhibit significant activity against several drug-resistant bacterial strains. Moreover, its unprecedented structure includes two anthraquinones linked through a highly hindered carbon–carbon bond as well as five contiguous stereocenters. The strategy reported by Suzuki and co-workers relies on a highly efficient pinacol rearrangement to form the key C–C bond between the two anthraquinone monomers.

SYNFACTS Contributors: Erick M. Carreira, Stefan Diethelm Synfacts 2013, 9(8), 0807 Published online: 18.07.2013 DOI: 10.1055/s-0033-1339371; Reg-No.: C04013SF **Comment:** The synthesis starts with lithiation of bromonaphthalene \mathbf{B} , followed by addition to ketone \mathbf{A} . The resulting tertiary alcohol \mathbf{C} was treated with triflic acid to induce a pinacol rearrangement to produce ketone \mathbf{D} . Construction of the tetrahydrofuran ring proceeded via acetal \mathbf{E} followed by methylation using Me₃Al. Oxidation of \mathbf{F} and subsequent quinone Diels–Alder reaction with diene \mathbf{G} delivered anthraquinone \mathbf{H} . This intermediate was converted into the natural product (\pm) -BE-43472B via epoxide \mathbf{J} .