Category

Polymer-Supported Synthesis

Key words

γ-Fe₂O₃

multicomponent reaction

tetrahydro-4*H*chromenes

hexahydroquinoline carboxylates S. ROSTAMNIA,* A. NURI, H. XIN, A. POURJAVADI, S. H. HOSSEINI (UNIVERSITY OF MARAGHEH AND SHARIF UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN; QINGDAO INSTITUTE OF BIOENERGY AND BIOPROCESS TECHNOLOGY, P. R. OF CHINA) Water Dispersed Magnetic Nanoparticles (H_2O -DMNPs) of γ -Fe $_2O_3$ for Multicomponent Coupling Reactions: a Green, Single-Pot Technique for the Synthesis of Tetrahydro-4*H*-chromenes and Hexahydroquinoline Carboxylates *Tetrahedron Lett.* **2013**, *54*, 3344–3347.

Synthesis of Tetrahydro-4H-chromenes Using Nano γ -Fe₂O₃ in H₂O

Significance: γ-Fe₂O₃ magnetic nanoparticles (nano-γ-Fe₂O₃), which were dispersed by ultrasonic irradiation in water, catalyzed the three-component condensation reaction of 1,3-cyclo-hexanediones, arylaldehydes, and malononitrile to give the corresponding tetrahydro-4*H*-chromenes in up to 95% yield (14 examples, eq. 1). The dispersed nano-γ-Fe₂O₃ was also effective for the four-component reaction of dimedone, arylaldehydes, β-keto esters, and NH₄OAc to afford the corresponding hexahydroquinoline carboxylates in up to 96% yield (8 examples, eq. 2).

SYNFACTS Contributors: Yasuhiro Uozumi, Takao Osako Synfacts 2013, 9(9), 1018 Published online: 19.08.2013 DOI: 10.1055/s-0033-1339588; Reg-No.: Y07913SF

Comment: The catalytic activity of the dispersed nano- γ -Fe₂O₃ was superior to that of FeCl₃, Fe(NO)₃, bulk-Fe₃O₄, nano-Fe₃O₄ and non-dispersed nano- γ -Fe₂O₃. In the formation of tetrahydro-4*H*-chromenes, the catalyst was recovered magnetically and reused four times.