Synlett 2013; 24(16): 2049-2056
DOI: 10.1055/s-0033-1339660
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Reduction of Aldehydes with Silanes in Water Catalyzed by Silver

Zhenhua Jia
a   Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. of China
,
Mingxin Liu
a   Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca
,
Xingshu Li
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. of China
,
Albert S. C. Chan
b   Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. of China
,
Chao-Jun Li*
a   Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca
› Author Affiliations
Further Information

Publication History

Received: 09 May 2013

Accepted after revision: 25 July 2013

Publication Date:
02 September 2013 (online)


Abstract

A highly efficient silver-catalyzed chemoselective method for the reduction of aldehydes to their corresponding alcohols in water was developed by using hydrosilanes as reducing agents. The ketones remained essentially inert under the same reaction conditions, thereby providing an additional synthetically useful chemo­selectivity.

 
  • References and Notes

    • 1a House HO. Modern Synthetic Reactions . Benjamin W. A; New York: 1972
    • 1b Hudlicky M. Reductions in Organic Chemistry . Ellis Horwood; Chichester: 1984
    • 2a Babler JH, Sarussi SJ. J. Org. Chem. 1981; 46: 3367
    • 2b Borch RF, Bernstein MD, Durst HD. J. Am. Chem. Soc. 1971; 93: 2897
    • 2c Burkhardt ER, Matos K. Chem. Rev. 2006; 106: 2617
    • 2d Cha JS, Moon SJ, Park JH. J. Org. Chem. 2001; 66: 7514
    • 2e Chaikin SW, Brown WG. J. Am. Chem. Soc. 1949; 71: 122
    • 2f Cook PL. J. Org. Chem. 1962; 27: 3873
    • 2g Figadere B, Chaboche C, Franck X, Peyrat J.-F, Cave A. J. Org. Chem. 1994; 59: 7138
    • 2h Sarkar DC, Das AR, Ranu BC. J. Org. Chem. 1990; 55: 5799
    • 2i Wang Z, Wroblewski AE, Verkade JG. J. Org. Chem. 1999; 64: 8021
    • 2j Zhang W, Shi M. Chem. Commun. 2006; 1218
  • 3 Cho BT, Kang SK. Tetrahedron 2005; 61: 5725
    • 4a Deetz JS, Luehr CA, Vallee BL. Biochemistry 1984; 23: 6822
    • 4b Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD. J. Org. Chem. 2005; 70: 342
    • 4c Kaluzna IA, Matsuda T, Sewell AK, Stewart JD. J. Am. Chem. Soc. 2004; 126: 12827
    • 4d Rodríguez S, Kayser M, Stewart JD. Org. Lett. 1999; 1: 1153
    • 5a Rylander PN. Catalytic Hydrogenation over Platinum Metals . Academic Press; New York: 1967: 21
    • 5b James BR. Homogeneous Hydrogenation . Wiley; New York: 1973
    • 5c Ikariya T, Murata K, Noyori R. Org. Biomol. Chem. 2006; 4: 393
    • 5d Knowles WS, Noyori R. Acc. Chem. Res. 2007; 40: 1238
    • 6a Casey CP, Guan H. J. Am. Chem. Soc. 2007; 129: 5816
    • 6b Langer R, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2011; 50: 2120
    • 6c Bart SC, Lobkovsky E, Chirik PJ. J. Am. Chem. Soc. 2004; 126: 13794
    • 6d Daida EJ, Peters JC. Inorg. Chem. 2004; 43: 7474
  • 7 Zhang G, Scott BL, Hanson SK. Angew. Chem. Int. Ed. 2012; 51: 12102
  • 8 Larson GL, Fry JL. Org. React. 2008; 71: 1
    • 9a Ojima I, Nihonyanagi M, Nagai Y. J. Chem. Soc., Chem. Commun. 1972; 938
    • 9b Ojima I, Kogure T, Nihonyanagi M, Nagai Y. Bull. Chem. Soc. Jpn. 1972; 45: 3506
    • 9c Ojima I, Kogure T, Nihonyanagi M, Nagai Y. Bull. Chem. Soc. Jpn. 1972; 45: 3722
    • 9d Corriu RJ. P, Moreau JJ. E. J. Chem. Soc., Chem. Commun. 1973; 38
    • 9e Kagan HB. Pure Appl. Chem. 1975; 43: 401
    • 10a Zhu G, Terry M, Zhang X. J. Organomet. Chem. 1997; 547: 97
    • 10b Nishibayashi Y, Takei I, Uemura S, Hidai M. Organometallics 1998; 17: 3420
    • 11a Yamamoto K, Hayashi T, Kumada M. J. Organomet. Chem. 1972; 46: 65
    • 11b Hayashi T, Yamamoto K, Kumada M. J. Organomet. Chem. 1976; 112: 253
  • 12 Chouthaiwale PV, Rawat V, Sudalai A. Tetrahedron Lett. 2012; 53: 148 ; and references cited therein
    • 13a Dumont W, Poulin JC, Dang T.-P, Kagan HB. J. Am. Chem. Soc. 1973; 95: 8295
    • 13b Kogure T, Ojima I. J. Organomet. Chem. 1982; 234: 249
    • 13c Nishiyama H, Park S.-B, Itoh K. Tetrahedron: Asymmetry 1992; 3: 1029
    • 13d Hayashi T, Hayashi C, Uozumi Y. Tetrahedron: Asymmetry 1995; 6: 2503
    • 14a Reis PM, Royo B. Catal. Commun. 2007; 8: 1057 ; and references cited therein
    • 14b Asao N, Ohishi T, Sato K, Yamamoto Y. Tetrahedron 2002; 58: 8195
    • 14c Bach P, Albright A, Laali KK. Eur. J. Org. Chem. 2009; 1961
    • 15a Welch GC, Juan RR. S, Masuda JD, Stephan DW. Science 2006; 314: 1124
    • 15b Chase PA, Jurca T, Stephan DW. Chem. Commun. 2008; 1701
    • 15c Spies P, Schwendemann S, Lange S, Kehr G, Fröhlich R, Erker G. Angew. Chem. Int. Ed. 2008; 47: 7543
    • 15d Chase PA, Welch GC, Jurca T, Stephan DW. Angew. Chem. Int. Ed. 2007; 46: 8050
    • 15e Mahdi T, Heiden ZM, Grimme S, Stephan DW. J. Am. Chem. Soc. 2012; 134: 4088
    • 15f Greb L, Oña-Burgos P, Schirmer B, Grimme S, Stephan DW, Paradies J. Angew. Chem. Int. Ed. 2012; 51: 10164

      For examples, see:
    • 16a Li C.-J, Chan TH. Tetrahedron Lett. 1991; 32: 7017
    • 16b Li C.-J. Tetrahedron 1996; 52: 5643
    • 16c Chan T.-H, Li C.-J, Wei ZY. J. Chem. Soc., Chem. Commun. 1990; 505
    • 16d Zhang WC, Li C.-J. J. Org. Chem. 1999; 64: 3230
    • 16e Keh CC. K, Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 4062
    • 16f Lubineau A, Auge J, Queneau Y. Synthesis 1994; 741
    • 17a Wei C, Li C.-J. J. Am. Chem. Soc. 2003; 125: 9584
    • 17b Wei C, Li Z, Li C.-J. Org. Lett. 2003; 5: 4473
    • 17c Wei C, Li Z, Li CJ. Synlett 2004; 1472
    • 17d Yao X, Li C.-J. Org. Lett. 2005; 7: 4395
    • 17e Zhao L, Li C.-J. Chem. Asian J. 2006; 1: 203
    • 17f Bonfield ER, Li C.-J. Org. Biomol. Chem. 2007; 5: 435
    • 17g Chen W.-W, Nguyen RV, Li C.-J. Tetrahedron Lett. 2009; 50: 2895
    • 17h Zhou L, Shuai Q, Jiang H.-f, Li C.-J. Chem. Eur. J. 2009; 15: 11668
    • 17i Dou X.-Y, Shuai Q, He L.-N, Li C.-J. Adv. Synth. Catal. 2010; 352: 2437
    • 17j Shore G, Yoo W.-J, Li C.-J, Organ MG. Chem. Eur. J. 2010; 16: 126
    • 17k Uhlig N, Li C.-J. Org. Lett. 2012; 14: 3000
    • 19a Li C.-J. Chem. Rev. 1993; 93: 2023
    • 19b Li C.-J. Chem. Rev. 2005; 105: 3095
    • 19c Li C.-J, Chan T.-H. Organic Reactions in Aqueous Media . John Wiley and Sons; New York: 1997
    • 19d Li C.-J, Chan T.-H. Comprehensive Organic Reactions in Aqueous Media . John Wiley and Sons; New York: 2007
    • 19e Chan T.-H, Yang Y, Li C.-J. J. Org. Chem. 1999; 64: 4452
  • 20 Wile BM, Stradiotto M. Chem. Commun. 2006; 4104
  • 21 Typical Procedure for Reduction of Aldehydes with Silanes in Water Degassed CH2Cl2 (0.25 mL) was added to a microwave tube containing the ligand dppf (8.3 mg, 0.015 mmol) and AgPF6 (2.5 mg, 0.01 mmol) under argon. The resulting suspension was stirred at r.t., until a clear, colorless solution was obtained; then the solvent was removed under high vacuum. Benzaldehyde (1a; 20.3 μL, 0.2 mmol), tripropylsilane (2a; 125 μL, 0.6 mmol), DIPEA (6.9 μL, 0.04 mmol), and H2O (0.5 mL) were subsequently added. The reaction mixture was stirred for 24 h at 100 °C, then cooled to r.t. and extracted with CH2Cl2 (3 × 10 mL). The combined organic phase was concentrated and purified by flash column chromatography on silica gel (hexane–EtOAc, 20:1) to give the desired product 3a as a colorless oil (19.5 mg, 90%). The NMR data are in full agreement with those previously reported in the literature.22 1H NMR (400 MHz, CDCl3): δ = 7.38–7.35 (m, 4 H), 7.32–7.29 (m, 1 H), 4.69 (s, 2 H), 1.82 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 140.8, 128.5, 127.6, 126.9, 65.3.
  • 22 Ford L, Atefi F, Singer RD, Scammells PJ. Eur. J. Org. Chem. 2011; 942