Synlett 2013; 24(16): 2132-2136
DOI: 10.1055/s-0033-1339674
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Synthesis of Racemic 3,4-cis and 3,4-trans Isomers of Isoxazolidine-4,5-diols and their Derivatives

Robert Fischer*
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Boris Stanko
a   Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic   Email: robert.fischer@stuba.sk
,
Nadežda Prónayová
b   Institute of Analytical Chemistry, Department of NMR Spectroscopy and Mass Spectrometry, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovak Republic
› Author Affiliations
Further Information

Publication History

Received: 26 June 2013

Accepted after revision: 03 August 2013

Publication Date:
27 August 2013 (online)


Abstract

A new synthetic approach to racemic 3,4-cis- and 3,4-trans-isoxazoldine-4,5-diols and their derivatives is presented. Dihydroxylation reactions of 3-substituted 2,3-dihydroisoxazoles with K2OsO4·2H2O in the presence of NMO in acetone–water proceeded from the less hindered side and provided the major 3,4-trans-isoxazolidine-4,5-diols in moderate to good yields. 3,4-cis-5-Methoxyisoxazolidin-4-ol was prepared diastereoselectively from the mixture of 3,4-cis- and 3,4-trans-4-bromo-5-hydroxyisoxazolidines using base-promoted intramolecular cyclization in anhydrous methanol. Representative derivatives of 3,4-cis- and 3,4-trans-5-cyano­isoxazolidin-4-ols are also presented as potentially useful building blocks for the synthesis of various C5-substituted isoxazolidines.

 
  • References and Notes

    • 1a Calderwood DJ, Johnston DN, Munschauer R, Rafferty P. Bioorg. Med. Chem. Lett. 2002; 1683
    • 1b Guile SD, Bantick JR, Cooper ME, Donald DK, Eyssade C, Ingall AH, Lewis RJ, Martin BP, Mohammed RT, Potter TJ, Reynolds RH, St-Gallay SA, Wright AD. J. Med. Chem. 2007; 50: 254
    • 2a Dicken CM, DeShong P. J. Org. Chem. 1982; 47: 2047
    • 2b DeShong P, Dicken CM, Leginus JM, Whittle RR. J. Am. Chem. Soc. 1984; 106: 5598
    • 2c DeShong P, Li W, Kennington JW. Jr, Ammon HL. J. Org. Chem. 1991; 56: 1364
    • 2d Burdisso M, Gandolfi R, Grünanger P. J. Org. Chem. 1990; 55: 3427
    • 2e Xu Z, Johannes CW, Salman SS, Hoveyda AH. J. Am. Chem. Soc. 1996; 118: 10926
    • 2f Xu Z, Johannes CW, La DS, Hofilena GE, Hoveyda AH. Tetrahedron 1997; 53: 16377
    • 2g Xu Z, Johannes CW, Houri AF, La DS, Cogan DA, Hofilena GE, Hoveyda AH. J. Am. Chem. Soc. 1997; 119: 10302
    • 3a Carboni B, Ollivault M, Le Bouguenec F, Carrié R, Jazouli M. Tetrahedron Lett. 1997; 38: 6665
    • 3b Davies CD, Marsden SP, Stokes ES. E. Tetrahedron Lett. 2000; 41: 4229
    • 3c Righi P, Marotta E, Rosini G. Chem. Eur. J. 1998; 4: 2501
    • 3d Ishikawa T, Kudo T, Shigemori K, Saito S. J. Am. Chem. Soc. 2000; 122: 7633
    • 3e Kudo T, Ishikawa T, Shimizu Y, Saito S. Org. Lett. 2003; 5: 3875
    • 4a Lombardo M, Rispoli G, Licciulli S, Trombini C, Dhavale DD. Tetrahedron Lett. 2005; 46: 3789
    • 4b Ishikawa T, Nagai K, Senzaki M, Tatsukawa A, Saito S. Tetrahedron 1998; 54: 2433
    • 4c Jurczak M, Socha D, Chmielewski M. Tetrahedron 1996; 52: 1411
    • 4d Amlaiky N, Leclerc G. Synthesis 1982; 426
    • 4e Amlaiky N, Leclerc G, Carpy A. J. Org. Chem. 1982; 47: 517
    • 4f Buchalska E, Plenkiewicz J. Synth. Commun. 2000; 30: 1467
    • 4g Martin BP, Cooper ME, Donald DK, Guile SD. Tetrahedron Lett. 2006; 47: 7635
  • 5 Fišera L. 1,3-Dipolar Cycloadditions of Sugar Derived Nitrones and their Utilization in the Synthesis. In Heterocycles from Carbohydrate Precursors . El Ashry ES. H. Springer; Berlin/Heidelberg: 2007: 287
    • 6a Rehák J, Fišera L, Kožíšek J, Bellovičová L. Tetrahedron 2011; 67: 5762
    • 6b Podolán G, Kleščíková L, Fišera L, Kožíšek J, Fronc M. Synlett 2011; 1668
    • 6c Podolán G, Fišera L, Kožíšek J, Fronc M. Heterocycles 2012; 84: 683
  • 7 Hýrošová E, Medvecký M, Fišera L, Hametner C, Fröhlich H, Marchetti M, Allmaier G. Tetrahedron 2008; 64: 3111
  • 8 Fischer R, Lackovičová D, Fišera L. Synthesis 2012; 44: 3783
    • 9a Forsman JJ, Wärnå J, Murzin DY, Leino R. Carbohydr. Res. 2009; 344: 1102
    • 9b Forsman JJ, Wärnå J, Murzin DY, Leino R. Eur. J. Org. Chem. 2009; 5666
  • 10 Typical Experimental Procedure for (±)-4,5-cis/4,5-trans-2-Benzyl-3-phenylisoxazolidine-4,5-diol (7a,b): 2,3-Dihydroisoxazole 2 (300 mg, 1.26 mmol) was dissolved in acetone–H2O (6 mL, 3:1), the solution was cooled to 10 °C and aq NMO (0.52 mL, 2.52 mmol, 50%, w/w) was added followed by K2OsO4·2H2O (4.6 mg, 0.012 mmol). The mixture was vigorously stirred at this temperature for 1.5 h. When starting 2,3-dihydroisoxazole had disappeared (TLC, hexanes–EtOAc, 67:33), the mixture was diluted with H2O and repeatedly extracted with CH2Cl2. The combined organic layers were dried with Na2SO4, filtered and the solvent was evaporated in vacuo (bath temperature bellow 35 °C). Epimeric isoxazolidine-4,5-diols 7a,b were purified by column chromatography (silica gel, hexanes–EtOAc, 50:50). Yield: 84% (287 mg, 1.06 mmol); colorless oil. 1H NMR (600 MHz, CDCl3): δ = 3.30 (br s, 2 H, 4-OHa,b), 3.59 (d, J = 7.0 Hz, 1 H, H-3b), 3.71 (d, J = 14.1 Hz, 1 H, NCH2Phb), 3.81 (d, J = 8.2 Hz, 1 H, H-3a), 3.94 (d, J = 14.1 Hz, 1 H, NCH2Pha), 3.96 (d, J = 14.1 Hz, 1 H, NCH2Phb), 4.02 (d, J = 14.1 Hz, 1 H, NCH2Pha), 4.16–4.19 (m, 1 H, H-4a), 4.30 (dd, J = 1.8, 7.0 Hz, 1 H, H-4b), 4.70 (br s, 2 H, 5-OHa,b), 5.15 (d, J = 1.8 Hz, 1 H, H-5b), 5.19–5.22 (m, 1 H, H-5a), 7.17–7.43 (m, 20 H, Ph). 13C NMR (150.8 MHz, CDCl3): δ = 59.8, 62.9, 73.6, 78.3, 80.7, 88.7, 94.3, 101.3, 127.3 (2 × C), 127.8, 128.1 (2 × C), 128.2 (2 × C), 128.3, 128.7, 128.9, 129.0, 129.1, 136.4, 136.6, 137.0, 137.4.
    • 11a Mitsunobu O, Kudo T, Nishida M, Tsuda N. Chem. Lett. 1980; 1613
    • 11b Smith AB. III, Hale KJ, Rivero RA. Tetrahedron Lett. 1986; 27: 5813
    • 11c Juteau H, Gareau Y, Labelle M. Tetrahedron Lett. 1997; 38: 1481
    • 12a Chanet-Ray J, Vessière R, Zéroual A. Heterocycles 1987; 26: 101
    • 12b Shirahase M, Kanemasa S, Hasegawa M. Tetrahedron Lett. 2004; 45: 4061
    • 12c Shirahase M, Kanemasa S, Oderaotoshi Y. Org. Lett. 2004; 6: 675
    • 12d Egart B, Lentz D, Czekelius C. J. Org. Chem. 2013; 78: 2490
  • 13 Selected Data: (±)-4,5-cis/4,5-trans-Benzoic Acid 2-Benzyl-4-hydroxy-3-phenylisoxazolidin-5-yl Ester (9a,b): Yield: 72%; colorless oil. 1H NMR (300 MHz, CDCl3): δ = 2.69 (br s, 1 H, OHa), 3.18 (br s, 1 H, OHb), 3.81 (d, J = 7.0 Hz, 1 H, H-3b), 3.90 (d, J = 14.7 Hz, 1 H, NCH2Phb), 4.03 (d, J = 9.4 Hz, 1 H, H-3a), 4.07 (d, J = 14.1 Hz, 1 H, NCH2Pha), 4.13 (d, J = 15.2 Hz, 1 H, NCH2Phb), 4.21 (d, J = 14.1 Hz, 1 H, NCH2Pha), 4.53 (dd, J = 4.1, 9.4 Hz, 1 H, H-4a), 4.60 (d, J = 7.0 Hz, 1 H, H-4b), 6.18 (s, 1 H, H-5b), 6.54 (d, J = 4.1 Hz, 1 H, H-5a), 7.16–7.63 (m, 26 H, Ph), 7.99–8.05 (m, 4 H, Ph). 13C NMR (75.4 MHz, CDCl3): δ = 59.5, 62.8, 71.4, 80.6, 88.6, 95.2, 103.2, 127.2, 127.5, 127.8, 127.9, 128.1, 128.2 (2 × C), 128.4 (2 × C), 128.5, 128.7, 128.8 (2 × C), 129.4, 129.5 (2 × C), 129.7, 129.8, 133.4, 133.5, 135.8, 136.1, 136.3, 136.5, 165.6, 166.7. (±)-3,4-cis-2-Benzyl-4-bromo-3-phenylisoxazolidin-5-ol (10a,b): Yield: 34%; yellowish foam. Major isomer: (±)-4,5-trans-10a: 1H NMR (300 MHz, CDCl3): δ = 3.54 (br s, 1 H, OH), 4.02 (d, J = 14.2 Hz, 1 H, NCH2Ph), 4.23 (d, J = 14.2 Hz, 1 H, NCH2Ph), 4.49 (d, J = 4.3 Hz, 1 H, H-4), 4.57 (d, J = 4.3 Hz, 1 H, H-3), 5.60 (s, 1 H, H-5), 7.28–7.49 (m, 10 H, Ph). 13C NMR (75.4 MHz, CDCl3): δ = 59.4, 62.6, 69.7, 102.1, 127.5, 128.3 (2 × C), 128.4, 128.5, 129.1, 134.8, 136.6. (±)-3,4-trans-2-Benzyl-4-bromo-3-phenylisoxa-zolidin-5-ol (10c,d): Yield: 34%; colorless solid; mp 88–89 °C (recrystallized from hexanes, 10c/10d = 83:17). Major isomer: (±)-4,5-trans-10c: 1H NMR (300 MHz, CDCl3): δ = 3.46 (br s, 1 H, OH), 3.76 (d, J = 14.8 Hz, 1 H, NCH2Ph), 3.96 (d, J = 8.0 Hz, 1 H, H-3), 4.03 (d, J = 14.8 Hz, 1 H, NCH2Ph), 4.20 (dd, J = 1.8, 8.0 Hz, 1 H, H-4), 5.50 (d, J = 1.8 Hz, 1 H, H-5), 7.28–7.51 (m, 10 H, Ph). 13C NMR (75.4 MHz, CDCl3): δ = 59.5, 59.9, 80.1, 102.1, 127.5, 128.0, 128.3, 128.8, 128.9, 129.1, 134.5, 136.4.
  • 14 Nair V, Jeffery A. Tetrahedron Lett. 1995; 36: 3627
  • 15 Typical Experimental Procedure for (±)-3,4-cis-4,5-trans-2-Benzyl-5-methoxy-3-phenylisoxazolidin-4-ol (11): A two-necked flask was flushed with argon and charged with a solution of the 4-bromoisoxazolidines 10ad (425 mg, 1.28 mmol) in anhyd MeOH (25 mL). The mixture was cooled in an ice/water-bath (2–5 °C), solid potassium tert-butoxide (286 mg, 2.56 mmol) was added under a stream of argon and stirring was continued at r.t. for 12 h. When starting materials had been consumed (TLC; hexanes–EtOAc, 75:25), the resultant mixture was neutralized by adding HCl (1 M). The solvents were partially removed under reduced pressure, H2O was added and the mixture was extracted twice with CH2Cl2. The combined organic layers were dried over Na2SO4, filtered and the solvent was evaporated in vacuo giving the crude isoxazolidin-4-ol 11 as a yellowish viscous oil, which was used directly in the next reaction. 1H NMR (300 MHz, CDCl3): δ = 3.46 (s, 3 H, OMe), 4.01 (d, J = 14.2 Hz, 1 H, NCH2Ph), 4.12 (d, J = 14.1 Hz, 1 H, NCH2Ph), 4.34, 4.37 (2 × d, J = 3.7 Hz, 2 H, H-3, H-4), 4.93 (s, 1 H, H-5), 7.29–7.51 (m, 10 H, Ph). 13C NMR (75.4 MHz, CDCl3): δ = 54.9, 64.2, 71.9, 81.1, 107.5, 127.3, 128.1, 128.3 (2 × C), 128.7, 128.9, 133.9, 137.4.
  • 16 Selected NMR Data: (±)-3,4-trans-4,5-trans-Benzoic Acid 2-Benzyl-5-cyano-3-phenylisoxazolidin-4-yl Ester (13a): 1H NMR (300 MHz, CDCl3): δ = 3.90 (d, J = 15.2 Hz, 1 H, NCH2Ph), 4.02 (d, J = 5.3 Hz, 1 H, H-3), 4.18 (d, J = 15.2 Hz, 1 H, NCH2Ph), 4.80 (d, J = 1.8 Hz, 1 H, H-5), 5.65 (dd, J = 1.8, 5.3 Hz, 1 H, H-4), 7.27–7.65 (m, 13 H, Ph), 8.01–8.05 (m, 2 H, Ph). 13C NMR (75.4 MHz, CDCl3): δ = 58.7, 70.7, 75.3, 88.1, 116.6, 127.5, 128.2 (2 × C), 128.3, 128.4, 128.6, 129.2, 129.3, 129.9, 134.0, 134.6, 135.8, 165.7. (±)-3,4-cis-4,5-trans-2-Benzyl-3-phenyl-4-trimethylsilyl-oxyisoxazolidine-5-carbonitrile (14a): 1H NMR (600 MHz, CDCl3): δ = –0.19 (s, 9 H, SiMe3), 3.69 (d, J = 6.5 Hz, 1 H, H-3), 3.70 (d, J = 15.3 Hz, 1 H, NCH2Ph), 4.14 (d, J = 15.3 Hz, 1 H, NCH2Ph), 4.68 (t, J = 6.5 Hz, 1 H, H-4), 5.07 (d, J = 7.0 Hz, 1 H, H-5), 7.24–7.44 (m, 10 H, Ph). 13C NMR (150.8 MHz, CDCl3): δ = –0.7, 59.0, 72.6, 74.4, 76.3, 116.0, 127.3, 128.1, 128.2, 128.4, 128.5, 130.5, 133.1, 136.2.
    • 17a Camiletti C, Dhavale DD, Gentilucci L, Trombini C. J. Chem. Soc., Perkin Trans. 1 1993; 3157
    • 17b Tanaka K, Sugimoto Y, Okafuji Y, Tachikawa M, Mitsuhashi K. J. Heterocycl. Chem. 1989; 26: 381
    • 17c Shimizu T, Ishizaki M, Nitada N. Chem. Pharm. Bull. 2002; 50: 908
    • 17d Merino P, Tejero T, Unzurrunzaga FJ, Franco S, Chiacchio U, Saita MG, Iannazzo D, Piperno A, Romeo G. Tetrahedron: Asymmetry 2005; 16: 3865