Synlett 2013; 24(16): 2165-2169
DOI: 10.1055/s-0033-1339675
letter
© Georg Thieme Verlag Stuttgart · New York

Simple Synthesis of Sulfonyl Chlorides from Thiol Precursors and Derivatives by NaClO2-Mediated Oxidative Chlorosulfonation

Zhanhui Yang
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Fax: +86(10)64435565   Email: jxxu@mail.buct.edu.cn
,
Yongpeng Zheng
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Fax: +86(10)64435565   Email: jxxu@mail.buct.edu.cn
,
Jiaxi Xu*
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Fax: +86(10)64435565   Email: jxxu@mail.buct.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 29 June 2013

Accepted after revision: 03 August 2013

Publication Date:
26 August 2013 (online)


Abstract

A simple method to synthesize diverse sulfonyl chlorides through NaClO2-mediated oxidative chlorosulfonation of S-alkyl isothiourea salts is presented. The approach features safe operation, environmental friendliness, convenient purification procedures, and delivers high yields of up to 96%. The procedure is also applicable to substrates such as thiols, disulfides, thioacetates, and xanthates. It is a versatile and convenient method for the synthesis of various sulfonyl chlorides from different thiol precursors and derivatives.

Supporting Information

 
  • References and Notes

    • 1a Hoyle J. The Chemistry of Sulfonic Acids, Esters and their Derivatives. In The Chemistry of Functional Groups. Patai S, Rapport Z. John Wiley & Sons; New York: 1991
    • 1b Green TW, Wuts PG. M. Protective Groups in Organic Chemistry. Wiley-Interscience; New York: 1999. 3rd ed
    • 1c Kociensky PJ. Protecting Groups. Thieme; New York: 1994
    • 2a Owa T, Yoshino H, Okauchi T, Okabe T, Ozawa Y, Sugi NH, Yoshimatsu K, Nagasu T, Koyanagi N, Kitoh K. Bioorg. Med. Chem. Lett. 2002; 12: 2097
    • 2b McKew JC, Lee KL, Shen MW. H, Thakker P, Foley MA, Behnke ML, Hu B, Sum F.-W, Tam S, Hu Y, Chen L, Kirincich SJ, Michalak R, Thomason J, Ipek M, Wu K, Wooder L, Ramarao MK, Murphy EA, Goodwin DG, Albert L, Xu X, Donahue F, Ku MS, Keith J, Nickerson-Nutter CL, Abraham WM, Williams C, Hegen M, Clark JD. J. Med. Chem. 2008; 51: 3388
    • 2c Ting PC, Aslanian RG, Cao J, Kim DW.-S, Kuang R, Zhou G, Herr RJ, Zych AJ, Yang J, Wu H, Zorn N. PTC Int. Appl WO 2008115381, 2008
    • 2d Bonk JD, Dellaria JF. Jr. PCT Int. Appl WO 2005066169, 2005
    • 3a Albright JD, Benz E, Lanzilotti AE, Goldman L. Chem. Commun. 1965; 413
    • 3b Fujita S. Synthesis 1982; 423
    • 3c Barco A, Benetti S, Pollini P, Tadia R. Synthesis 1974; 877
    • 3d Johary NS, Owen LN. J. Chem. Soc. 1955; 1307
    • 3e Su D.-S, Markowitz MK, Murphy KL, Wan B.-L, Zrada MM, Harrell CM, O’Malley SS, Hess JF, Ransom RW, Chang RS, Wallace MA, Raab CE, Dean DC, Pettibone DJ, Freidinger RM, Bonk MG. Bioorg. Med. Chem. Lett. 2004; 14: 6045
    • 3f Brouwer JA, Monnee MC. F, Liskamp RM. J. Synthesis 2000; 1579
    • 3g Kataoka T, Iwama T, Takagi A. Synthesis 1998; 423
    • 3h Blotny G. Tetrahedron Lett. 2003; 44: 1499
    • 4a Monnee MC. F, Marijne MF, Brouwer AJ, Liskamp RM. J. Tetrahedron Lett. 2000; 41: 7991
    • 4b Humljan J, Gobec S. Tetrahedron Lett. 2005; 46: 4069
    • 4c Kværnø L, Werder M, Hauser H, Carreira EM. Org. Lett. 2005; 7: 1145
    • 4d Meinzer A, Breckel A, Thaher BA, Manicone N, Otto H.-H. Helv. Chim. Acta 2004; 87: 90
    • 4e Park YJ, Shin HH, Kim YH. Chem. Lett. 1992; 1483
    • 4f Kim DW, Ko YK, Kim SH. Synthesis 1992; 1203
    • 4g Nishiguchi A, Maeda K, Miki S. Synthesis 2006; 4131
    • 4h Surya Prakash GK, Mathew T, Panja C, Olah GA. J. Org. Chem. 2007; 72: 5847
    • 4i Bahrami K, Khodaei MM, Soheilizad M. J. Org. Chem. 2009; 74: 9287
    • 4j Bahrami K, Khodaei MM, Soheilizad M. Synlett 2009; 2773
    • 4k Sohmiya H, Kimura T, Fujita M, Ando T. Tetrahedron 1998; 54: 13737
    • 4l Massah AR, Sayadi S, Ebrahimi S. RSC Adv. 2012; 2: 6606
    • 4m Joyard Y, Papamicael C, Bohn P, Bischoff L. Org. Lett. 2013; 15: 2294
    • 4n Veisi H, Ghorbani-Vaghei R, Hemmati S, Mahmoodi J. Synlett 2011; 2315
    • 4o Liu J, Hou SL, Xu JX. Phosphorus, Sulfur Silicon Relat. Elem. 2011; 186: 2377
    • 4p Meng FH, Chen N, Xu JX. Sci. China Chem. 2012; 55: 2548
    • 4q Pu Y.-M, Christesen A, Ku Y.-Y. Tetrahedron Lett. 2010; 51: 418
    • 4r Wright SW, Hallstrom KN. J. Org. Chem. 2006; 71: 1080
    • 4s Huang Y, Bennett F, Verma V, Njoroge FG, MacCoss M. Tetrahedron Lett. 2012; 53: 3203
    • 4t Watson RJ, Batty D, Baxter AD, Hannah DR, Owen DA, Montana JG. Tetrahedron Lett. 2002; 43: 683
  • 5 In the second method, thioacetates are always synthesized from alkyl halides or mesylates and HSAc or KSAc. For examples of chlorosulfonation of thioacetaes, see refs. 4g, 4o, 4p, 4s, and 4t. For a one-pot procedure, see ref. 4m.

    • Chlorine and N-chlorosuccinimide were used to realize the chlorosulfonation of S-alkyl isothiourea salts, see:
    • 6a Johnson TB, Sprague JM. J. Am. Chem. Soc. 1936; 58: 1348
    • 6b Sprague JM, Johnson TB. J. Am. Chem. Soc. 1937; 59: 1837
    • 6c Yang ZH, Xu JX. Synthesis 2013; 45: 1675
    • 7a Lindgren BO, Nilsson T. Acta Chem. Scand. 1973; 27: 888
    • 7b Bal BS, Childers WE, Pinnick HW. Tetrahedron 1981; 37: 2091
    • 7c Dalcanale E, Montanari F. J. Org. Chem. 1986; 51: 567
    • 7d Kurti L, Czako B. Strategic Applications of Named Reactions in Organic Synthesis. Elsevier Academic Press; Amsterdam: 2005
  • 8 Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M. Green Chem. 2008; 10: 31
  • 9 Synthesis of 3e; Typical Procedure: (1) p-Chlorobenzyl chloride 1e (0.805 g, 5 mmol) and thiourea (0.381 g, 5 mmol) were heated at reflux in EtOH (5 mL) for 1 h. After removal of the solvent under vacuum S-p-chlorobenzyl isothiouronium chloride (2e) was obtained as a white solid in quantitative yield. (2) A 50-mL three-necked flask equipped with a thermometer and a solid-addition funnel was immersed in an ice-bath. To the flask was sequentially added solid NaClO2 (1.61 g, 15 mmol, 85% purity), MeCN (10 mL), and then concd HCl (3 mL) during 1 min, keeping the inner temperature below 10 °C. Then 2e was slowly added through the solid-addition funnel to keep the inner temperature below 20 °C. After the addition, the resulting mixture was stirred for another 30 min, then H2O (25 mL) was added, and the resultant mixture was evaporated in vacuum at 15 °C to remove MeCN. After addition of H2O (100 mL), filtration on a Büchner funnel and drying under an infrared lamp, 3e was afforded as colorless crystals. Yield: 1.080 g (96%); mp 91–93 °C (Lit.6c 90–92 °C). 1H NMR (400 MHz, CDCl3): δ = 7.46–7.41 (m, 4 H), 4.83 (s, 2 H); 13C NMR (101 MHz, CDCl3): δ = 136.8, 132.6, 129.5, 124.6, 70.0.