Synthesis 2013; 45(21): 2919-2939
DOI: 10.1055/s-0033-1339677
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Catalyzed Trifluoromethylation and Related Transformations

Pinhong Chen
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: gliu@mail.sioc.ac.cn
,
Guosheng Liu*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)64166128   Email: gliu@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 29 May 2013

Accepted after revision: 03 July 2013

Publication Date:
02 October 2013 (online)


Dedicated to Professor Huilin Chen on the occasion of his 75th birthday

Abstract

The incorporation of fluorine-containing moieties into organic compounds is of great importance in pharmaceutical, agricultural, and materials science. Transition-metal-mediated perfluoroalkylation reactions have been studied in the past few decades and, owing to need for low-cost and environmentally friendly processes in the industrial and academic communities, the catalytic reaction has attracted much attention and has become a hot research field. Herein, an overview of recent advances on transition-metal-catalyzed trifluoromethylation and difluoromethylation reactions is given. Trifluoromethylthiolation and trifluoromethoxylation reactions are also reviewed.

1 Introduction

1.1 Transition-Metal–Trifluoromethyl Complexes

1.2 Stoichiometric Trifluoromethylation

2 Transition-Metal-Catalyzed Trifluoromethylation

2.1 Copper-Catalyzed Reactions

2.2 Palladium-Catalyzed Reactions

2.3 Other Transition-Metal-Catalyzed Reactions

3 Difluoromethylation

3.1 Direct Difluoromethylation

3.2 Indirect Difluoromethylation

4 Trifluoromethylthiolation

5 Trifluoromethoxylation

6 Conclusion

 
  • References

  • 2 Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
  • 3 Lehmann F. Arch. Exp. Path. Pharmakol. 1928; 130: 250
  • 4 Yale HL. J. Med. Pharm. Chem. 1959; 1: 121
  • 5 Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
    • 7a Manteau S, Pazenok S, Vors J.-P, Leroux FR. J. Fluorine Chem. 2010; 131: 140
    • 7b Jeschke P, Baston E, Leroux FR. Mini-Rev. Med. Chem. 2007; 7: 1027
    • 8a Tiers GV. D. J. Am. Chem. Soc. 1960; 82: 5513
    • 8b Drysdale JJ, Coffman DD. J. Am. Chem. Soc. 1960; 82: 5111
  • 9 Kitazume T, Ishikawa N. Chem. Lett. 1982; 137
    • 10a Huang Y.-Z, Zhou Q.-L, Li J. Youjihuaxue 1985; 332
    • 10b Zhou Q.-L, Huang Y.-Z. J. Org. Chem. 1987; 56: 3552
    • 10c Zhou Q.-L, Huang Y.-Z. J. Fluorine Chem. 1988; 39: 87
    • 10d Zhou Q.-L, Huang Y.-Z. J. Fluorine Chem. 1989; 43: 385
    • 11a Chen Q.-Y, Yang Z.-Y. Youjihuaxue 1985; 1025
    • 11b Chen Q.-Y, Yang Z.-Y. J. Fluorine Chem. 1985; 28: 399

      For recent reviews:
    • 12a Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 12b Lu C, Shen Q, Liu D. Chin. J. Org. Chem. 2012; 32: 1380
    • 12c Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 13: 2479
    • 12d Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
    • 12e Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
  • 13 Lundgren RJ, Stradiotto M. Angew. Chem. Int. Ed. 2010; 49: 9322
  • 14 Willert-Porada MA, Burton DJ, Baenziger NC. J. Chem. Soc., Chem. Commun. 1989; 1633
  • 15 Naumann D, Roy T, Tebbe K.-F, Crump W. Angew. Chem. Int. Ed. 1993; 32: 1482
  • 16 Dubinina GG, Furtutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
  • 17 Dubinina GG, Ogikubo J, Vicic DA. Organometallics 2008; 27: 6233
  • 18 Kieltsch I, Duninina GG, Hamacher C, Kaiser A, Torres-Nieto J, Hutchison JM, Klein A, Budnikova Y, Vicic DA. Organometallics 2010; 29: 1451
  • 19 Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
  • 20 Weng Z, Lee R, Jia W, Yuan Y, Wang W, Feng X, Huang K.-W. Organometallics 2011; 30: 3229
  • 21 Tomashenko OA, Escudero-Adán EC, Belmonte MM, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
  • 22 Zhang C.-P, Vicic DA. Organometallics 2012; 31: 7812
  • 23 Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
  • 24 Rosevear DT, Stone FG. A. J. Chem. Soc. A 1968; 164
  • 25 Culkin DA, Hartwig JF. Organometallics 2004; 23: 3398
    • 26a Grushin VV, Marshall WJ. J. Am. Chem. Soc. 2006; 128: 4632
    • 26b Grushin VV, Marshall WJ. J. Am. Chem. Soc. 2006; 128: 12644
  • 27 Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 2878
  • 28 Cho EJ, Senecal TD, Kinzel T, Zhang Y, Watson DA, Buchwald SL. Science 2010; 328: 1679
  • 29 Ball ND, Gary JB, Ye Y, Sanford MS. J. Am. Chem. Soc. 2011; 133: 7577
    • 30a Ye Y, Ball ND, Kampf JW, Sanford MS. J. Am. Chem. Soc. 2010; 132: 14682
    • 30b Powers DC, Lee E, Ariafard A, Sanford MS, Yates BF, Canty AJ, Ritter T. J. Am. Chem. Soc. 2012; 134: 12002
  • 31 Maleckis A, Sanford MS. Organometallics 2011; 30: 6617
  • 32 Racowski JM, Ball ND, Sanford MS. J. Am. Chem. Soc. 2011; 133: 18022
  • 33 Dubinina GG, Brennessel WW, Miller JL, Vicic DA. Organometallics 2008; 27: 3933
  • 34 Klein A, Vicic DA, Biewer C, Kieltsch I, Stirnat K, Hamacher C. Organometallics 2012; 31: 5334
  • 35 Ye Y, Lee SH, Sanford MS. Org. Lett. 2011; 13: 5464
  • 36 Hafner A, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 3713
  • 37 Zeng Y, Zhang L, Zhao Y, Ni C, Zhao J, Hu J. J. Am. Chem. Soc. 2013; 135: 2955
  • 38 Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
  • 39 Chen Q.-Y, Wu S.-W. J. Chem. Soc., Chem. Commun. 1989; 705
  • 40 Su D.-B, Duan J.-X, Yu A.-J, Chen Q.-Y. J. Fluorine Chem. 1993; 65: 11
  • 41 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
  • 42 Inoue M, Araki K, Kawada K. JP 2009-234921, 2009
  • 43 Kondo H, Oishi M, Fujikawa K, Amii H. Adv. Synth. Catal. 2011; 353: 1247
  • 44 Knauber T, Arikan F, Röschenthaler G.-V, Gooßen LJ. Chem. Eur. J. 2011; 17: 2689
  • 45 Li Y, Chen T, Wang H, Zhang R, Jin K, Wang X, Duan C. Synlett 2011; 1713
  • 46 Schareina T, Wu X.-F, Zapf A, Cotté A, Gotta M, Beller M. Top. Catal. 2012; 55: 426
  • 47 Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
  • 48 Liu T, Shen Q. Org. Lett. 2011; 13: 2342
  • 49 Huang Y, Fang X, Lin X, Li H, He W, Huang K.-W, Yuan Y, Weng Z. Tetrahedron 2012; 68: 9949
  • 50 Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
  • 51 Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M. Tetrahedron Lett. 2010; 51: 5947
  • 52 Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
  • 53 He Z, Luo T, Hu M, Cao Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 3944
  • 54 Li Z, Cui Z, Liu Z.-Q. Org. Lett. 2013; 15: 406
  • 55 Feng C, Loh T.-P. Chem. Sci. 2012; 3: 3458
  • 56 Chu L.-L, Qing FL. J. Am. Chem. Soc. 2010; 132: 7262
  • 57 Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
  • 58 Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
  • 59 Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251
  • 60 Weng Z, Li H, He W, Yao L.-F, Tan J, Chen J, Yuan Y, Huang K.-W. Tetrahedron 2012; 68: 2527
  • 61 Luo D.-F, Xu J, Fu Y, Guo Q.-X. Tetrahedron Lett. 2012; 53: 2769
  • 62 Janson PG, Ghoneim I, Ilchenko NO, Szabó KJ. Org. Lett. 2012; 14: 2882
  • 63 Egami H, Shimizu R, Sodeoka M. Tetrahedron Lett. 2012; 53: 5503
  • 64 Xu J, Fu Y, Luo D.-F, Jiang Y.-Y, Xiao B, Liu Z.-J, Gong T.-J, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
  • 65 Parsons AT, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
  • 66 Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
  • 67 Chu L, Qing F.-L. Org. Lett. 2012; 14: 2106
  • 68 Shimizu R, Egami H, Hamashima Y, Sodeoka M. Angew. Chem. Int. Ed. 2012; 51: 4577
  • 69 Mizuta S, Galicia-López O, Engle KM, Verhoog S, Wheelhouse K, Rassias G, Gouverneur V. Chem. Eur. J. 2012; 18: 8583
  • 70 Miyake Y, Ota S.-i, Nishibayashi Y. Chem. Eur. J. 2012; 18: 13255
  • 71 Xu J, Xiao B, Xie C.-Q, Luo D.-F, Liu L, Fu Y. Angew. Chem. Int. Ed. 2012; 51: 12551
  • 72 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
  • 73 Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
  • 74 Cho EJ, Buchwald SL. Org. Lett. 2011; 13: 6552
  • 75 Samant BS, Kabalka GW. Chem. Commun. 2011; 47: 7236
  • 76 Wang X, Truesdale L, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648
  • 77 Zhang X.-G, Dai H.-X, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2012; 134: 11948
  • 78 Zhang L.-S, Chen K, Chen G, Li B.-J, Luo S, Guo Q.-Y, Wei J.-B, Shi Z.-J. Org. Lett. 2013; 15: 10
  • 79 Mu X, Chen S, Zhen X, Liu G. Chem. Eur. J. 2011; 17: 6039
  • 80 Mu X, Wu T, Wang H.-y, Guo Y.-l, Liu G. J. Am. Chem. Soc. 2012; 134: 878
  • 81 Wu X, Chu L, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 2198
  • 82 Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Médebielle M, Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
  • 83 Parsons AT, Senecal TD, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 2947
  • 84 Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5524
  • 85 Prakash GK. S, Ganesh SK, Jones J.-P, Kulkarni A, Masood K, Swabeck JK, Olah GA. Angew. Chem. Int. Ed. 2012; 51: 12090
  • 86 Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2012; 134: 1494
  • 87 Zhu J, Wang F, Huang W, Zhao Y, Ye W, Hu J. Synlett 2011; 7: 899
  • 88 He Z, Hu M, Luo T, Li L, Hu J. Angew. Chem. Int. Ed. 2012; 51: 11545
  • 89 Fujikawa K, Fujioka Y, Kobayashi A, Amii H. Org. Lett. 2011; 13: 5560
  • 90 Feng Z, Chen F, Zhang X. Org. Lett. 2012; 14: 1938
  • 91 Chen Q.-Y, Duan J.-X. J. Chem. Soc., Chem. Commun. 1993; 918
  • 92 Adams DJ, Goddard A, Clark JH, Macquarrie DJ. Chem. Commun. 2000; 987
  • 93 Adams DJ, Clark JH. J. Org. Chem. 2000; 65: 1456
  • 94 Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
  • 95 Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
  • 96 Remy DC, Rittle KE, Hunt CA, Freedman MB. J. Org. Chem. 1976; 41: 1644
  • 97 Kondratenko NV, Kolomeytsev AA, Popov VI, Yagupolskii LM. Synthesis 1985; 667
  • 98 Chen C, Xie Y, Chu L, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
  • 99 Chen C, Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 12454
  • 100 Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
  • 101 Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
  • 102 Feiring AE. J. Org. Chem. 1979; 44: 2907
    • 103a Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A. Angew. Chem. Int. Ed. 2009; 48: 4332
    • 103b Stanek K, Koller R, Togni A. J. Org. Chem. 2008; 73: 7678
    • 103c Umemoto T, Adachi K, Ishihara S. J. Org. Chem. 2007; 72: 6905
  • 104 Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
  • 105 Kolomeitsev AA, Vorobyev M, Gillandt H. Tetrahedron Lett. 2008; 49: 449
  • 106 Huang C, Liang T, Harada S, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 13308