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Introduction
Toluenesulfonyl cyanide (TsCN) is a convenient and ver-
satile cyanide source that has great potential in organic
synthesis. It displays useful reactivity for electrophilic cy-
anation of aromatic compounds,1 carbonyl compounds,2

and other types of organic compounds.3 It has been used
in radical-mediated cyanation4 and hydrocyanation5 reac-
tions. Furthermore, TsCN has been reported to be a good
component for [4+2]6 and [3+2]7 cycloaddition reactions.
The sulfonyl tetrazoles produced from 1,3-dipolar cyclo-
addition of TsCN with azides can be further elaborated us-
ing nucleophilic aromatic substitution (SNAr). This two-
step process represents an interesting ligation strategy that
probably warrants greater exploration in chemical biolo-
gy.8 Other uses of TsCN in the recent literature include re-
actions with allylic alcohols to make allyl sulfones,9 and

palladium-catalyzed C–H activation of arenes to synthe-
size diaryl sulfides.10 

TsCN is a white crystalline solid (mp 49–50 °C) that is
available from dozens of commercial sources. It can be
readily prepared in the lab by several methods (Scheme 1).11

Compared to other commonly used CN+ equivalents, such
as cyanogen bromide [LD50 (rats, orally) = 25–50 mg/kg],12

TsCN is less toxic [LD50 (rats, orally) = 800–1000 mg/kg]13

and has a longer shelf life. Hence, TsCN will likely con-
tinue to serve as an important and versatile reagent for
organic synthesis. 

Scheme 1  Cox and Ghosh’s synthesis of toluenesulfonyl cyanide11b 

Abstracts

SO2Na + ClCN H2O
r.t.

SO2CN

89% yield

(A) CN+ Source for Electrophilic Cyanation
The Knochel group has utilized TsCN as an electrophilic reagent to
trap a variety of organomagnesium compounds. Notably: i) Magne-
siation of 2,5-dichlorothiophene followed by reaction with TsCN
provides the aryl nitrile in 73% yield.1 α-Cyanation of ketones has
been one important application of TsCN; ii) Under mildly basic con-
ditions, 1,3-dicarbonyl compounds can be expeditiously α-cyanated
using TsCN. Both cyclic and acyclic substrates undergo this trans-
formation well, giving good to excellent yields;2a iii) To realize α-
cyanation of more sensitive ketones or esters, Hilmersson and co-
workers have developed a SmI2/KHMDS-mediated Reformatsky-
type cyanation.2b TsCN is found to be the ‘most suitable’ cyanating
agent for a putative heteroleptic RSmI(HMDS) complex. The result-
ing 3-cyano-chroman-4-ones are further oxidized to the more stable
chromone derivatives in up to 77% yield over the two steps.

(B) CN• Source for Free-Radical Cyanation
Direct C(sp3)–H cyanation is achieved via a photoinduced radical
generation process. The photosensitizer benzophenone is applied to
generate carbon radicals from alkanes, benzylic compounds, alco-
hols, ethers, and amines. Trapped in situ by TsCN, these radicals
yield the corresponding nitriles in moderate to excellent yields. Pro-
tected L-proline is cyanated in a highly regio- and diastereoselective
manner at the δ-position in 91% yield (based on added TsCN).4
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(C) CN• Source for Hydrocyanation
Carreira and co-workers have disclosed a unique hydrocyanation of
unactivated olefins, using tosyl cyanide and phenylsilane under the
catalysis of Co(II)–salen complexes. This practical method displays
a broad substrate scope and excellent Markovnikov selectivity.5a Al-
ternatively, a sequential hydroboration–cyanation process converts
olefins into cyano compounds in an anti-Markovnikov fashion.5b

(D) Dienophile for [4+2] Hetero-Diels–Alder (DA) Reaction
Hetero-DA reactions of tosyl cyanide and 1,3-bis(trimethylsiloxy)-
1,3-butadienes have recently been studied by Langer and co-work-
ers.6 After acidic work-up, the reactions afford a series of 2-(arylsul-
fonyl)-4-hydroxypyridines, among which the 5-tolylthio-substituted
compound shows promising antibiotic activity against Gram-
positive bacteria.

(E) Dipolarophile for [3+2] Huisgen Cycloaddition
The 1,3-dipolar cycloaddition of TsCN and azides was first intro-
duced by Sharpless and Demko as a ‘click chemistry’ strategy.7a A
Cu(I)-promoted version was later reported under mild conditions.7b

Recently, the Dondoni group have employed this cycloaddition–
SNAr sequence to make novel glycoconjugates.8 Noteworthy, ther-
mal cycloaddition of β-azidomethyl galactoside and TsCN produces
1-alkyl-5-sulfonyl tetrazole in excellent yield (93%). Treatment
with N-Fmoc cysteine under basic conditions provides tetrazole-
tethered C-galactosyl cysteine, an unnatural C-glycosylated amino
acid suitable for automated peptide synthesis.

(F) Sulfonyl Source for Synthesis of Allyl Sulfones 
In an unprecedented organic transformation, TsCN reacts with allyl-
ic alcohols to form allyl cyanate intermediates under basic condi-
tions. The expelled p-tolyl sufinate then attacks in an SN2′ fashion,
with elimination of HOCN, affording trisubstituted allyl sulfones in
high yield (80–92%).9

(G) Sulfur Source for Synthesis of Diaryl Sulfides
A direct reductive thiolation of arenes is reported exploiting TsCN
as the key sulfur source.10 This Pd(II)-catalyzed procedure produces
thioethers in 37–76% yield with excellent chemoselectivity and
moderate regioselectivity.

Ph
PhSiH3, Co(II)–salen (1 mol%)

TsCN (1.2 equiv), EtOH, r.t., 1.5 h
Ph

CN

 4.63 mmol, 0.74 g 
93% yield

5 mmol, 0.67 g

1) catechol borane, AcNMe2 (cat.), CH2Cl2

2) TsCN, t-BuON=NOt-Bu (initiator), CH2Cl2, 40 °C CN
88% yield
dr ≥ 95:5

Me3SiO OSiMe3
1) TsCN, –78 °C      
     to r.t. neat

2) aq 1 M NH4Cl N
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CO2Me TsCN, i-Pr2EtN

CH2Cl2, 12 h

CO2Me

92% yield
E/Z = 95:5
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TsCN, Pd(OAc)2

TFA
r.t., 1 h

S

72% yield
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