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Introduction

5-Alkyl and 5,5-dialkyl Meldrum’s acids (1 and 2, respec-
tively) are used in total synthesis.1 Monoalkylated deriva-
tives 1 are synthesized from Meldrum’s acid 3 by
condensation with aldehyde2 (or by acylation3) followed
by hydrogenation. 

5,5-Dialkyl Meldrum’s acids 2 can be obtained by alkyla-
tion of Meldrum’s acid 3 or its monoalkylated derivatives
1 (Scheme 1).4 Herein, reactions of Meldrum’s acids 1 and

2 proceeding with destruction of 1,3-dioxane cycle are re-
viewed. 
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(A) Hydrolysis of Meldrum’s acid 2 leads to malonic or acetic
acid derivatives.5 Radical reduction of compound 2 with SmI2 and
H2O forms 3-hydroxypropanoic acids 4 selectively. The first step is
activation of Meldrum’s acid via coordination of SmI2 to the carbon-
yl group, followed by electron transfer.6

(B) Detz et al.7 have reported that dimethyl malonate 5 can be ob-
tained from propargylic derivative 2. The authors propose that the
first step of the reaction cascade is copper-mediated addition of
Meldrum’s acid 2 to the triple bond and sequential methanolysis of
the dioxane cycle forming lactone 6, which is further cleaved with
methoxide leading to compound 5.

(C) β-Substituted aldehydes 7 can be synthesized by Lewis base pro-
moted hydrosilylation of Meldrum’s acids 1 with phenylsilane, fol-
lowed by hydrolysis. In situ treatment of aldehyde 7 with an amine
and sequential hydrogenation of the formed imine with H2 in the
presence of Pd/C or with NaBH(OAc)3 gives γ-substituted amines
8.8

(D) 5-Alkyl Meldrum’s acids 1 are used for the rapid synthesis of
2-alkyl acrylates 9 via Mannich-type reactions. The advantage of the
method is the clean conversion into products due to the formation of
volatile by-products – acetone, carbon dioxide, and dimethylamine.9
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(E) Derivatives of 5-(but-3-enyl) Meldrum’s acid 10 are suitable for
the synthesis of cyclopentanols 11 via radical cyclization upon treat-
ment with SmI2 in H2O.6 Exo-trig/exo-trig radical cyclization cas-
cade occurs, when substituent R2 is an alkene or alkyne; such a
transformation gives fused bicyclic system 12.10 

(F) Meldrum’s acid can act as a carbon-based leaving group. Cata-
lytic hydrogenolysis of Meldrum’s acids 2 (R1 = H) is an excellent
route for the synthesis of compounds 13 both with secondary and
tertiary benzylic stereocenters in 65–96% yield under mild reaction
conditions. As the reaction proceeds with inversion at the stereocen-
ter, an SN2 mechanism is proposed.11 Treatment of Meldrum’s acid
derivatives 2 (R1 = H, Me) with nucleophiles in the presence of Lew-
is acids furnishes compounds 14 and 15. The yields vary from 51%
to quantitative.12

(G) Johnson and co-workers reported the hydroperoxidation of 5-
alkyl Meldrum’s acids 1 with O2 in the presence of Cu(NO3)2.

13

These reaction conditions are compatible with unsaturated bonds in
substituent R1. The peroxides 16 are suitable for intramolecular oxi-
dation of unsaturated bonds via electrophilic activation; such an ap-
proach was used for the synthesis of lactones 17 and 18.

(H) Addition of 5-substituted Meldrum’s acid 1 to prop-2-ynal 19
forms 3-(1,3-dioxan-5-yl)-4,4-dimethoxy-but-2-enal. The thermo-
lysis of 2,3-unsaturated aldehyde intermediate provides a synthetic
procedure to 2H-pyran-2-one 20. Hydrolysis of acetal moiety results
in 4-formyl pyran-2-one 21.14

(I) Copper- and iron-15 or silver-catalyzed16 tandem cyclization–
hydrolysis–decarboxylation of 5-propargyl Meldrum’s acid 2 is an
efficient approach for the synthesis of Z-γ-alkylidene lactones 22.
The compatibility of copper(I) and iron(III) is not established yet.
The authors15 suggest that copper(I) activates the alkyne moiety, but
iron(III) interacts with the oxygen atom. 

(J) Intermolecular cleavage of Meldrum’s acid derivatives with nu-
cleophiles is well known. Sapi et al.17 reported the tandem deprotec-
tion–intramolecular cyclization of Meldrum’s acids 23 applied for
the synthesis of lactones 24a and lactame 24b.
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