Synlett 2014; 25(2): 288-292
DOI: 10.1055/s-0033-1340291
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Total Synthesis of (–)-trans-Blechnic Acid via Rhodium(II)-Catalyzed C–H Insertion and Palladium(II)-Catalyzed C–H Olefination Reactions

Motoki Ito
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Ryosuke Namie
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Janagiraman Krishnamurthi
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Hitomi Miyamae
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Koji Takeda
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Hisanori Nambu
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
,
Shunichi Hashimoto*
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060–0812, Japan   Fax: +81(11)7064981   Email: hsmt@pharm.hokudai.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 19 September 2013

Accepted after revision: 22 October 2013

Publication Date:
03 December 2013 (online)


Abstract

An asymmetric total synthesis of (–)-trans-blechnic acid, a dihydrobenzofuran neolignan, has been achieved. The key steps involve an elaboration of the cis-2,3-dihydrobenzofuran core structure by enantio- and diastereoselective intramolecular C–H insertion using dirhodium(II) tetrakis[N-phthaloyl-(R)-tert-leucinate] [Rh2(R-PTTL)4] and a direct coupling of an acrylate unit with the core structure employing Yu’s palladium(II)-catalyzed intermolecular C–H olefination.

Supporting Information

 
  • References and Notes

    • 1a Wada H, Kido T, Tanaka N, Murakami T, Saiki Y, Chen C.-M. Chem. Pharm. Bull. 1992; 40: 2099
    • 1b Wang C.-Z, Davin LB, Lewis NG. Chem. Commun. 2001; 113
    • 1c Davin LB, Wang C.-Z, Helms GL, Lewis NG. Phytochemistry 2003; 62: 501
  • 2 Kelley CJ, Mahajan JR, Brooks LC, Neubert LA, Breneman WR, Carmack M. J. Org. Chem. 1975; 40: 1804
  • 3 Hayashi T, Thomson RH. Phytochemistry 1975; 14: 1085
  • 4 Benevides PJ. C, Sartorelli P, Kato MJ. Phytochemistry 1999; 52: 339
    • 5a For a review, see: Apers S, Vlietinck A, Pieters L. Phytochem. Rev. 2003; 2: 201
    • 5b Abd-Elazem IS, Chen HS, Bates RB, Huang RC. C. Antiviral Res. 2002; 55: 91
    • 5c Coy ED, Cuca LE, Sefkow M. Bioorg. Med. Chem. 2009; 19: 6922

      For reviews on stereoselective synthesis of neolignans, see:
    • 6a Sefkow M. Synthesis 2003; 2595
    • 6b Bertolini F, Pineschi M. Org. Prep. Proced. Int. 2009; 41: 385

      For recent examples of asymmetric total synthesis of natural products containing 2-aryl-2,3-dihydrobenzofuran, see:
    • 7a O’Malley SJ, Tan KL, Watzke A, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2005; 127: 13496
    • 7b Jiménez-González L, García-Muñoz S, Álvarez-Corral M, Muñoz-Dorado M, Rodríguez-García I. Chem. Eur. J. 2006; 12: 8762
    • 7c Clive DL. J, Stoffman EJ. L. Org. Biomol. Chem. 2008; 6: 1831
    • 7d Adams H, Gilmore NJ, Jones S, Muldowney MP, von Reuss SH, Vemula R. Org. Lett. 2008; 10: 1457
    • 7e Calter MA, Li N. Org. Lett. 2011; 13: 3686
    • 7f Ghosh AK, Cheng X, Zhou B. Org. Lett. 2012; 14: 5046
    • 7g Ortega N, Beiring B, Urban S, Glorius F. Tetrahedron 2012; 68: 5185
    • 7h Chen C.-Y, Weisel M. Synlett 2013; 24: 189
    • 8a Fischer J, Savage GP, Coster MJ. Org. Lett. 2011; 13: 3376
    • 8b Varadaraju TG, Hwu JR. Org. Biomol. Chem. 2012; 10: 5456
  • 9 Saito H, Oishi H, Kitagaki S, Nakamura S, Anada M, Hashimoto S. Org. Lett. 2002; 4: 3887
    • 10a Davies HM. L, Grazini MV. A, Aouad E. Org. Lett. 2001; 3: 1475
    • 10b Davies HM. L, Morton D. Chem. Soc. Rev. 2011; 40: 1857
    • 11a Kurosawa W, Kan T, Fukuyama T. Synlett 2003; 1028
    • 11b Kurosawa W, Kan T, Fukuyama T. J. Am. Chem. Soc. 2003; 125: 8112
    • 11c Koizumi Y, Kobayashi H, Wakimoto T, Furuta T, Fukuyama T, Kan T. J. Am. Chem. Soc. 2008; 130: 16854
    • 11d Matsumoto S, Asakawa T, Hamashima Y, Kan T. Synlett 2012; 23: 1082
  • 12 For the effective use of an immobilized catalyst based on Rh2(S-PTTL)4 in this system, see: Takeda K, Oohara T, Anada M, Nambu H, Hashimoto S. Angew. Chem. Int. Ed. 2010; 49: 6979
  • 13 Davies and co-workers reported that Rh2(S-PTAD)4 is a highly effective catalyst for the construction of cis-2-aryl-2,3-dihydrobenzofurans. See: Reddy RP, Lee GH, Davies HM. L. Org. Lett. 2006; 8: 3437
    • 14a García-Muñoz S, Álvarez-Corral M, Jiménez-González L, López-Sánchez C, Rosales A, Muñoz-Dorado M, Rodríguez-García I. Tetrahedron 2006; 62: 12182
    • 14b López-Sánchez C, Álvarez-Corral M, Jiménez-González L, Muñoz-Dorado M, Rodríguez-García I. Tetrahedron 2013; 69: 5511
  • 15 Very recently, the Yu and Davies groups reported a conceptually new asymmetric approach to highly functionalized trans-2,3-dihydrobenzofurans by a sequence involving a Rh2(R-PTTL)4-catalyzed enantioselective intermolecular C–H insertion followed by a Pd-catalyzed intramolecular C–H activation–C–O cyclization. See: Wang H, Li G, Engle KM, Yu J.-Q, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 6774
  • 16 Zheng S.-L, Yu W.-Y, Xu M.-X, Che C.-M. Tetrahedron Lett. 2003; 44: 1445
  • 17 Natori Y, Tsutsui H, Sato N, Nakamura S, Nambu H, Shiro M, Hashimoto S. J. Org. Chem. 2009; 74: 4418
  • 18 Kan and co-workers recently accomplished an asymmetric total synthesis of (–)-aperidine containing a cis-2,3-dihydrobenzofuran ring via a Rh2(S-PTTL)4-catalyzed C–H insertion process. See: Wakimoto T, Miyata K, Ohuchi H, Asakawa T, Nukaya H, Suwa Y, Kan T. Org. Lett. 2011; 13: 2789
  • 19 Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 5767
    • 20a Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science 2010; 327: 315
    • 20b Engle KM, Wang D.-H, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 14137
    • 20c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
  • 21 For further illustrations of the power of a late-stage intermolecular C–H olefination strategy, see references 7f and 15.
  • 22 For a recent review on C–H functionalization in natural products synthesis, see: Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 23 Hurd CD, Greengard H, Pilgrim FD. J. Am. Chem. Soc. 1930; 52: 1700
  • 24 Nicolaou KC, Lister T, Denton RM, Gelin CF. Tetrahedron 2008; 64: 4736
    • 25a Lindgren BO, Nilsson T. Acta Chem. Scand. 1973; 27: 888
    • 25b Kraus GA, Taschner MJ. J. Org. Chem. 1980; 45: 1175
    • 25c Bal BS, Childers WE. Jr, Pinnick HW. Tetrahedron 1981; 37: 2091
    • 25d Hayashida J, Rawal VH. Angew. Chem. Int. Ed. 2008; 47: 4373
  • 26 Taber DF, You K, Song Y. J. Org. Chem. 1995; 60: 1093
  • 27 Procedure for the Rh2(R-PTTL)4-Catalyzed Intramolecular C–H Insertion of Compound 13 Rh2(R-PTTL)4 (63.9 mg, 0.045 mmol, 1 mol%) was added to a stirred solution of 4 Å MS (3.20 g) and 13 (3.20 g, 4.49 mmol) in toluene (45 mL) at –20 °C. After stirring for 1 h, the reaction mixture was filtered through a Celite pad. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel; toluene–EtOAc, 200:1) to give 12 as a white solid (2.50 g, 81%); Rf = 0.56 (toluene–EtOAc, 100:1); mp 67.0–68.5 °C; [α]D 20 –10.5 (c 0.33, CHCl3). IR (neat): ν = 2945, 2867, 1744 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.03–1.09 (m, 36 H), 1.15–1.29 (m, 6 H), 3.51 (s, 3 H), 4.10 (ddt, J = 1.6, 6.0, 13.6 Hz, 1 H), 4.23 (ddt, J = 1.6, 6.0, 13.6 Hz, 1 H), 4.65 (d, J = 10.0 Hz, 1 H), 5.07 (d, J = 1.6 Hz, 1 H), 5.11 (dt, J = 1.6, 6.0 Hz, 1 H), 5.24 (s, 2 H), 5.52–5.62 (m, 1 H), 5.90 (d, J = 10.0 Hz, 1 H), 6.73 (s, 1 H), 6.74 (s, 1 H), 6.77 (s, 1 H), 6.88 (t, J = 7.6 Hz, 1 H), 6.96 (d, J = 7.6 Hz, 1 H), 7.07 (d, J = 7.6 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.1, 13.3, 18.0, 18.1, 54.0, 56.4, 65.6, 86.2, 95.6, 117.2, 118.1, 118.4, 119.4, 119.5, 119.8, 121.8, 126.3, 129.6, 131.9, 141.7, 146.7, 147.3, 149.8, 169.3. ESI-HRMS: m/z calcd for C38H60O7NaSi2 [M + Na]+: 707.3770; found: 707.3768. The ee of 12 was determined to be 80% by HPLC with a Chiralcel IF (hexane–iPrOH, 300:1, 0.5 mL/min): t R = 35.9 min for the major enantiomer, t R = 49.2 min for the minor enantiomer.
  • 28 Boutevin B, Rigal G, Rousseau A, Bosc D. J. Fluorine Chem. 1988; 38: 47
  • 29 Under Fujioka conditions (see ref. 30), deprotection of the MOM group did not proceed at all; instead, epimerization of 11a was observed (2,3-cis/2,3-trans = 57:43).
    • 30a Fujioka H, Kubo O, Senami K, Minamitsuji Y, Maegawa T. Chem. Commun. 2009; 4429
    • 30b Fujioka H, Minamitsuji Y, Kubo O, Senami K, Maegawa T. Tetrahedron 2011; 67: 2949
  • 31 Procedure for the Pd(II)-Catalyzed C–H Olefination of Compound 19b To a solution of 19b (340 mg, 0.566 mmol), Pd(OAc)2 (25 mg, 0.113 mmol, 20 mol%), KHCO3 (199 mg, 1.98 mmol), and Ac-Ile-OH (39 mg, 0.226 mmol, 40 mol%) in tert-amyl-OH (5 mL) was added a solution of trichloroethyl acrylate (129 mg, 0.633 mmol) in tert-amyl alcohol (1 mL) under O2 (1 atm, balloon). The reaction mixture was stirred for 8 h at 50 °C. The mixture was partitioned between EtOAc and 10% aq citric acid, and the aqueous layer was separated. The organic layer was washed with brine and dried over Na2SO4. Filtration and evaporation in vacuo furnished the crude product (510 mg), which was purified by column chromatography (silica gel; toluene–MeCN, 25:1) to give 11b (226 mg, 50%) as a pale yellow amorphous; Rf = 0.41 (hexane–EtOAc, 3:1); [α]D 20 –17.3 (c 0.98, CHCl3). IR (neat): ν = 2945, 2867, 1716, 1610 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.04–1.11 (m, 36 H), 1.23–1.31 (m, 6 H), 4.65 (d, J = 9.2 Hz, 1 H), 4.82 (s, 2 H), 5.94 (d, J = 9.2 Hz, 1 H), 6.36 (d, J = 16.0 Hz, 1 H), 6.82–6.86 (m, 2 H), 6.90–6.94 (m, 2 H), 7.21 (d, J = 8.4 Hz, 1 H), 7.67 (d, J = 16.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 13.0, 13.1, 18.1, 53.3, 74.2, 87.5, 95.2, 115.7, 117.3, 118.3, 119.0, 120.0, 121.9, 123.9, 126.7, 127.7, 142.9, 143.2, 147.1, 147.6, 147.7, 165.3, 171.2. ESI-HRMS: m/z calcd for C38H55Cl3O8NaSi2 [M + Na]+: 823.2420; found: 823.2413.
  • 32 Data for Synthetic (–)-trans-Blechnic Acid (1) A colorless needle; Rf = 0.27 (hexane–EtOAc–AcOH, 1:2:0.3); mp 196.0–197.0 °C (H2O); [α]D 26 –27.2 (c 0.78, MeOH). 1H NMR (500 MHz, CD3OD): δ = 4.59 (d, J = 9.0 Hz, 1 H), 5.93 (d, J = 9.0 Hz, 1 H), 6.26 (d, J = 16.0 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1 H), 6.80 (d, J = 8.5 Hz, 1 H), 6.84 (dd, J = 2.0, 8.5 Hz, 1 H), 6.96 (d, J = 2.0 Hz, 1 H), 7.14 (d, J = 8.5 Hz, 1 H), 7.56 (d, J = 16.0 Hz, 1 H). 13C NMR (125 MHz, acetone-d 6): δ = 54.4, 87.7, 114.9, 115.5, 117.6, 117.9, 119.4, 122.1, 124.2, 129.0, 129.1, 142.4, 144.5, 145.4, 145.9, 149.0, 167.9, 170.9. ESI-HRMS: m/z calcd for C18H14O8Na [M + Na]+: 381.0634; found: 381.0621.