Synlett 2014; 25(3): 313-323
DOI: 10.1055/s-0033-1340324
account
© Georg Thieme Verlag Stuttgart · New York

Iron(III) Chloride Promoted Cyclization: A Facile Approach to Polycyclic Aromatics for Functional Materials

Yue Cao
Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Melecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: jieyuwang@pku.edu.cn   Email: jianpei@pku.edu.cn
,
Xiao-Ye Wang
Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Melecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: jieyuwang@pku.edu.cn   Email: jianpei@pku.edu.cn
,
Jie-Yu Wang*
Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Melecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: jieyuwang@pku.edu.cn   Email: jianpei@pku.edu.cn
,
Jian Pei*
Beijing National Laboratory for Molecular Sciences, the Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Melecular Engineering, Peking University, Beijing 100871, P. R. of China   Email: jieyuwang@pku.edu.cn   Email: jianpei@pku.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 12 September 2013

Accepted after revision: 24 October 2013

Publication Date:
20 December 2013 (online)


Abstract

Polycyclic aromatics have attracted much research interest owing to their promising applications in supramolecular chemistry and organic electronics. Much research focuses on developing novel polycyclic aromatics with diverse properties. Among various synthetic methodologies for constructing polycyclic aromatics, iron(III) chloride (FeCl3) promoted cyclization has been extensively utilized in the synthesis of such organic π-conjugated materials. In this account, we summarize investigations of the FeCl3-promoted cyclization reaction, the construction of a series of polycyclic aromatics through this method, and the applications of such compounds in thin-film transistors and functional nanomaterials and nanodevices.

1 Introduction

2 Synthetic Considerations

3 Sulfur-Containing Heteroarenes for Thin-Film Transistors

4 Large Heteroarenes for Nanomaterials and Nanodevices

5 Summary and Outlook

 
  • References

  • 2 Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem. Rev. 2012; 112: 2208
    • 3a Walker B, Kim C, Nguyen T.-Q. Chem. Mater. 2011; 23: 470
    • 3b Anthony JE. Chem. Mater. 2011; 23: 583
    • 3c Lin Y, Li Y, Zhan X. Chem. Soc. Rev. 2012; 41: 4245
  • 4 Zhu M, Yang C. Chem. Soc. Rev. 2013; 42: 4963
    • 5a Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science 2004; 304: 1481
    • 5b Yamamoto Y, Fukushima T, Suna Y, Ishii N, Saeki A, Seki S, Tagawa S, Taniguchi M, Kawai T, Aida T. Science 2006; 314: 1761
    • 5c Kastler M, Pisula W, Wasserfallen D, Pakula T, Müllen K. J. Am. Chem. Soc. 2005; 127: 4286
    • 5d Dössel LF, Kamm V, Howard IA, Laqyai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, Feyter SD, Müllen K. J. Am. Chem. Soc. 2012; 134: 5876
    • 5e Xiao S, Tang J, Beetz T, Guo X, Tremblay N, Siegrist T, Zhu Y, Steigerwald M, Nuckolls C. J. Am. Chem. Soc. 2006; 128: 10700
    • 6a Takimiya K, Nakano M, Kang M.-J, Miyazaki E, Osaka I. Eur. J. Org. Chem. 2013; 217
    • 6b Payne MM, Odom SA, Parkin SR, Anthony JE. Org. Lett. 2004; 6: 3325
    • 6c Lei T, Zhou Y, Cheng C.-Y, Cao Y, Peng Y, Bian J, Pei J. Org. Lett. 2011; 13: 2642
    • 6d Hatakeyama T, Hashimoto S, Seki S, Nakamura M. J. Am. Chem. Soc. 2011; 133: 18614
    • 6e Wang X.-Y, Lin H.-R, Lei T, Yang D.-C, Zhuang F.-D, Wang J.-Y, Yang S.-C, Pei J. Angew. Chem. Int. Ed. 2013; 52: 3117
    • 6f Zhai L, Shukla R, Rathore R. Org. Lett. 2009; 11: 3474
    • 6g Navale TS, Thakur K, Rathore R. Org. Lett. 2011; 13: 1634
    • 7a Fechtenkötter A, Saalwächter K, Harbison MA, Müllen K. Spiess H. W. 1999; 38: 3039
    • 7b Ye Q, Chang J, Huang K.-W, Chi C. Org. Lett. 2011; 13: 5960
    • 7c Ye Q, Chang J, Huang K.-W, Dai G, Zhang J, Chen Z.-K, Wu J, Chi C. Org. Lett. 2012; 14: 2786
    • 7d Davis NK. S, Thompson AL, Anderson HL. Org. Lett. 2010; 12: 2124
    • 7e Davis NK. S, Thompson AL, Anderson HL. J. Am. Chem. Soc. 2011; 133: 30
    • 7f Jiao C, Huang K.-W, Wu J. Org. Lett. 2011; 13: 632
    • 7g Zeng L, Jiao C, Huang X, Huang K.-W, Chin W.-S, Wu J. Org. Lett. 2011; 13: 6026
    • 7h Jiao C, Huang K.-W, Chi C, Wu J. J. Org. Chem. 2011; 76: 661
  • 8 Zhang W, Sun X, Xia P, Huang J, Yu G, Wong MS, Liu Y, Zhu D. Org. Lett. 2012; 14: 4382
    • 9a Luo J, Xu X, Mao R, Miao Q. J. Am. Chem. Soc. 2012; 134: 13796
    • 9b Dou X, Yang X, Bodwell GJ, Wagner M, Enkelmann V, Müllen K. Org. Lett. 2007; 9: 2485
    • 9c Wadumethrige SH, Rathore R. Org. Lett. 2008; 10: 5139
  • 10 Simpson CD, Mattersteig G, Martin K, Gherghel L, Bauer RE, Räder HJ, Müllen K. J. Am. Chem. Soc. 2004; 126: 3139
    • 11a Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 11b Rempala P, Kroulík J, King BT. J. Am. Chem. Soc. 2004; 126: 15002
    • 12a McCullough RD. Adv. Mater. (Weinheim, Ger.) 1998; 10: 93
    • 12b Wang L.-X, Li X.-G, Yang Y.-L. React. Funct. Polym. 2001; 47: 125
    • 12c González-Tejera MJ, Sánchez de La Blanca E, Carrillo I. Synth. Met. 2008; 158: 165
  • 13 Zhou Y, Liu W.-J, Zhang W, Cao X.-Y, Zhou Q.-F, Ma Y, Pei J. J. Org. Chem. 2006; 71: 6822
    • 14a Pei J, Zhang W.-J, Mao J, Zhou X.-H. Tetrahedron Lett. 2006; 47: 1551
    • 14b Liu W.-J, Zhou Y, Zhou Q.-F, Ma Y, Pei J. Org. Lett. 2008; 10: 2123
    • 15a Cao X.-Y, Zhou X.-H, Zi H, Pei J. Macromolecules 2004; 37: 8874
    • 15b Cao X.-Y, Zhang W, Zi H, Pei J. Org. Lett. 2004; 6: 4845
    • 15c Duan X.-F, Wang J.-L, Pei J. Org. Lett. 2005; 7: 4071
    • 15d Luo J, Zhou Y, Niu Z.-Q, Zhou Q.-F, Ma Y, Pei J. J. Am. Chem. Soc. 2007; 129: 11314
    • 15e Wang J.-L, Tang Z.-M, Xiao Q, Ma Y, Pei J. Org. Lett. 2008; 10: 4271
    • 15f Jiang Y, Wang L, Zhou Y, Cui Y.-X, Wang J, Cao Y, Pei J. Chem. Asian J. 2009; 4: 548
    • 15g Yuan S.-C, Sun Q, Lei T, Du B, Li Y.-F, Pei J. Tetrahedron 2009; 65: 4165
    • 15h Wang L, Jiang Y, Luo J, Zhou Y, Zhou J, Wang J, Pei J, Cao Y. Adv. Mater. (Weinheim, Ger.) 2009; 21: 4854
    • 15i Lei T, Luo J, Wang L, Ma Y, Wang J, Cao Y, Pei J. New J. Chem. 2010; 34: 699
    • 15j Wang J.-L, Zhong C, Tang Z.-M, Wu H, Ma Y, Cao Y, Pei J. Chem. Asian J. 2010; 5: 105
    • 15k Wang J.-L, He Z, Wu H, Cui H, Li Y, Gong Q, Cao Y, Pei J. Chem. Asian J. 2010; 5: 1455
    • 15l Pei J, Wang J.-L, Cao X.-Y, Zhou X.-H, Zhang W.-B. J. Am. Chem. Soc. 2003; 125: 9944
    • 15m Cao X.-Y, Zhang W.-B, Wang J.-L, Zhou X.-H, Lu H, Pei J. J. Am. Chem. Soc. 2003; 125: 12430
    • 15n Cao X.-Y, Liu X.-H, Zhou X.-H, Zhang Y, Jiang Y, Cao Y, Cui Y.-X, Pei J. J. Org. Chem. 2004; 69: 6050
    • 15o Zhang W, Cao X.-Y, Zi H, Pei J. Org. Lett. 2005; 7: 959
    • 15p Jiang Y, Wang J.-Y, Ma Y, Cui Y.-X, Zhou Q.-F, Pei J. Org. Lett. 2006; 8: 4287
    • 15q Jiang Y, Lu Y.-X, Cui Y.-X, Zhou Q.-F, Ma Y, Pei J. Org. Lett. 2007; 9: 4539
    • 15r Wang J.-L, Yan J, Tang Z.-M, Xiao Q, Ma Y, Pei J. J. Am. Chem. Soc. 2008; 130: 9952
    • 15s Wang J.-L, Zhou Y, Li Y, Pei J. J. Org. Chem. 2009; 74: 7449
    • 15t Wang J.-L, Tang Z.-M, Xiao Q, Ma Y, Pei J. Org. Lett. 2009; 11: 863
    • 15u Luo J, Lei T, Xu X, Li F.-M, Ma Y, Wu K, Pei J. Chem. Eur. J. 2008; 14: 3860
    • 15v Wang J.-Y, Yan J, Li Z, Han J.-M, Ma Y, Bian J, Pei J. Chem. Eur. J. 2008; 14: 7760
    • 15w Wang J.-Y, Yan J, Ding L, Ma Y, Pei J. Adv. Funct. Mater. 2009; 11: 1746
    • 15x Luo J, Lei T, Wang L, Ma Y, Cao Y, Wang J, Pei J. J. Am. Chem. Soc. 2009; 131: 2076
    • 15y Luo J, Chen L, Wang J.-Y, Lei T, Li L.-Y, Pei J, Song Y. New J. Chem. 2010; 34: 2530
  • 16 Cao X.-Y, Zi H, Zhang W, Lu H, Pei J. J. Org. Chem. 2005; 70: 3645
    • 17a Gelinck GH, Huitema HE. A, Van Veenendaal E, Cantatore E, Schrijnemakers L, Van der Putten J, Geuns TC. T, Beenhakkers M, Giesbers JB, Huisman BH, Meijer EJ, Benito EM, Touwslager FJ, Marsman AW, Van Rens BJ. E, De Leeuw DM. Nat. Mater. 2004; 3: 106
    • 17b Huitema HE. A, Gelinck GH, van der Putten JB. P. H, Kuijk KE, Hart CM, Cantatore E, Herwig PT, van Breemen AJ. J. M, de Leeuw DM. Nature 2001; 414: 599
    • 17c Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 4835
    • 17d Comiskey B, Albert JD, Yoshizawa H, Jacobson J. Nature 1998; 394: 253
    • 17e Sokolov AN, Roberts ME, Bao Z. Mater. Today 2009; 12: 12
    • 18a Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 18b Tang ML, Reichardt AD, Wei P, Bao Z. J. Am. Chem. Soc. 2009; 131: 5264
    • 18c Tang ML, Oh JH, Reichardt AD, Bao Z. J. Am. Chem. Soc. 2009; 131: 3733
    • 18d Tang ML, Reichardt AD, Miyaki N, Stoltenberg RM, Bao Z. J. Am. Chem. Soc. 2008; 130: 6064
    • 18e Tang ML, Okamoto T, Bao Z. J. Am. Chem. Soc. 2006; 128: 16002
    • 18f Miao Q, Chi X, Xiao S, Zeis R, Lefenfeld M, Siegrist T, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2006; 128: 1340
    • 18g Miao Q, Lefenfeld M, Nguyen T.-Q, Siegrist T, Kloc C, Nuckolls C. Adv. Mater. 2005; 17: 407
    • 18h Miao Q, Nguyen TQ, Someya T, Blanchet GB, Nuckolls C. J. Am. Chem. Soc. 2003; 125: 10284
  • 19 Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas J.-L. Chem. Rev. 2007; 107: 926
  • 20 Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
    • 21a Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. J. Am. Chem. Soc. 2004; 126: 984
    • 21b Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J. Am. Chem. Soc. 2007; 129: 15732
  • 22 Yan Q, Zhou Y, Ni B.-N, Ma Y, Wang J, Pei J, Cao Y. J. Org. Chem. 2008; 73: 5328
  • 23 Liu W.-J, Zhou Y, Ma Y, Cao Y, Wang J, Pei J. Org. Lett. 2007; 9: 4187
  • 24 Wang J.-Y, Zhou Y, Yan J, Ding L, Ma Y, Cao Y, Wang J, Pei J. Chem. Mater. 2009; 21: 2595
    • 25a Zang L, Che Y, Moore JS. Acc. Chem. Res. 2008; 41: 1596
    • 25b Zhao YS, Fu H, Peng A, Ma Y, Liao Q, Yao J. Acc. Chem. Res. 2010; 43: 409
    • 25c Li R, Hu W, Liu Y, Zhu D. Acc. Chem. Res. 2010; 43: 529
    • 25d Kim FS, Ren G, Jenekhe SA. Chem. Mater. 2011; 23: 682
  • 26 Lei T., Wang J.-Y., Pei J.; Chem. Mater. 2013, DOI: 10.1021/cm4018776.
  • 27 Zhou Y, Liu W.-J, Ma Y, Wang H, Qi L, Cao Y, Pei J. J. Am. Chem. Soc. 2007; 129: 12386
  • 28 Zhou Y, Lei T, Wang L, Pei J, Cao Y, Wang J. Adv. Mater. 2010; 22: 1484
    • 29a Zhou Y, Wang L, Wang J, Pei J, Cao Y. Adv. Mater. 2008; 20: 3745
    • 29b Ai N, Zhou Y, Zhang Y, Chen H, Wang J, Pei J, Cao Y. Org. Electron. 2013; 14: 1103
  • 30 Wang L, Zhou Y, Yan J, Wang J, Pei J, Cao Y. Langmuir 2009; 25: 1306
    • 31a Liu N, Zhou Y, Wang L, Peng J, Wang J, Pei J, Cao Y. Langmuir 2009; 25: 665
    • 31b Liu N, Zhou Y, Ai N, Luo C, Peng J, Wang J, Pei J, Cao Y. Langmuir 2011; 27: 14710
    • 31c Niu Q, Zhou Y, Wang L, Luo C, Luo J, Peng J, Cao Y, Pei J, Wang J. Langmuir 2010; 26: 5213
    • 31d Niu Q, Zhou Y, Wang L, Peng J, Wang J, Pei J, Cao Y. Adv. Mater. 2008; 20: 964
  • 32 Yin J, Zhou Y, Lei T, Pei J. Angew. Chem. Int. Ed. 2011; 50: 6320