Stereoselective Synthesis of syn- β-Hydroxy-α-vinyl Carboxylate Esters

Category
Metal-Mediated Synthesis

Key words

Selected examples:

86% yield, 82% ee dr $>40: 1$

91\% yield, 82% ee dr $>40: 1$
up to 91% yield dr > 40:1 up to 89% ee
$\mathrm{R}=\mathrm{Ph}, \mathrm{Cy},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{OTBDPS}, \mathrm{CHCHPh}, 3$-pyridyl, 2-furyl

80% yield, 83% ee dr > 40:1

79% yield, 78% ee dr > 40:1

83\% yield, 89\% ee dr > 40:1

Significance: The authors report a novel enantioand diastereoselective synthesis of syn- β-hydroxy-α-vinyl carboxylate esters. The reaction proceeds via a reductive aldol reaction of an ethyl allene carboxylate with 10-TMS-9-borabicyclo[3.3.2]decane.

Comment: The exclusive formation of syn-β-hydroxy- α-vinyl carboxylate esters can be explained by an aldol reaction via a chair-like transition state. DFT calculations suggest that the allene hydroboration involves a 1,4-reduction of the ethyl allene carboxylate with 10-TMS-9-borabicyclo[3.3.2]decane.

[^0]DOI: 10.1055/s-0033-1340369; Reg-No.: P15913SF

[^0]: synfacts Contributors: Paul Knochel, Andreas K. Steib
 Synfacts 2014, 10(1), 0079 Published online: 13.12.2013

