Enantioselective Homologation of α-Keto Esters with α-Diazo Esters

Significance: The Lewis acid catalyzed homologation of carbonyl compounds with diazo compounds can realize synthetically useful carbon chain extension. The authors achieve the asymmetric homologation of acyclic α-keto esters with α-diazo esters by using chiral N,N'-dioxide-yttrium(III) complexes. Both aryl- and alkyl-substituted α-keto esters are applicable, providing the corresponding succinate derivatives in good yields and enantioselectivities.

Comment: The use of bulky adamantyl α-diazo esters can suppress the formation of undesired by-products. Steric hindrance on the 2,6-positions of the phenyl ring in the ligand is also essential to improve both enantioselectivity and reactivity. The attack of α-diazo ester occurs from re-face of the coordinating α-keto ester preferably due to the obstruction of si-face by the aryl group in the N,N'-dioxide ligand.