Synthesis 2014; 46(04): 445-454
DOI: 10.1055/s-0033-1340502
practical synthetic procedures
© Georg Thieme Verlag Stuttgart · New York

Efficient Preparation of α-Aminoboronic Acid Derivatives via Boroalkyl Group Migration

Adam Zajdlik
,
Zhi He
,
Jeffrey D. St Denis
,
Andrei K. Yudin*
Further Information

Publication History

Received: 05 November 2013

Accepted after revision: 09 December 2013

Publication Date:
21 January 2014 (online)


Abstract

A reaction demonstrating migration of boron-substituted carbon is presented. It is shown that α-boroalkyl groups of transient boroalkyl acyl azide intermediates migrate readily from carbon to nitrogen. This transformation allows access to a novel class of stable molecules, α-boryl isocyanates, from easily preparable α-borylcarboxylic acid precursors. The protocol enables the synthesis of a diverse range of α-aminoboronic acid derivatives, including α,α-disubstituted analogues.

 
  • References

  • 1 Updated address: Massachusetts Institute of Technology, Department of Chemistry 77 Massachusetts Ave., Bldg 18-590 Cambridge, MA 02139, USA.
  • 2 Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; New York: 2011
    • 3a Fevig JM, Abelman MM, Britelli DR, Kettner CA, Knabb RM, Weber PC. Bioorg. Med. Chem. Lett. 1996; 6: 295
    • 3b Dominguez C, Carini DJ, Weber PC, Knabb RM, Alexander RS, Kettner CA, Wexler RR. Bioorg. Med. Chem. Lett. 1997; 7: 79
    • 3c Fevig JM, Buriak JJr, Cacciola J, Alexander RS, Kettner CA, Knabb RM, Pruitt JR, Weber PC, Wexler RR. Bioorg. Med. Chem. Lett. 1998; 8: 301
    • 3d Shevni AB. Biochemistry 1986; 25: 1286
    • 3e Touchet S, Carreaux F, Carboni B, Bouillon A, Boucher J.-L. Chem. Soc. Rev. 2011; 40: 3895
    • 3f Rao RJ. R, Rao AK. S. B, Swapna K, Rani BB, Kumar SP, Awantika S, Murthy YL. N. J. Korean Chem. Soc. 2011; 55: 765
    • 3g For a review, see: Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig A.-K, Kalesse M. Angew. Chem. Int. Ed. 2013; 52: 2

      Reviews:
    • 4a Baker SJ, Tomsho JW, Benkovic SJ. Chem. Soc. Rev. 2011; 40: 4279
    • 4b Dembitsky VM, Srebnik M. Tetrahedron 2003; 59: 579
    • 4c Baker SJ, Ding CZ, Akama T, Zhang YK, Hernandez V, Xia Y. Future Med. Chem. 2009; 1: 1275
    • 4d Hiratake J, Oda J. Biosci. Biotechnol. Biochem. 1997; 61: 211
  • 5 Greener B, Millan DS In Modern Drug Synthesis . Li JJ, Johnson DS. Wiley; Hoboken: 2010. Chap. 8, 99-110
    • 6a He Z, Yudin AK. J. Am. Chem. Soc. 2011; 133: 13770
    • 6b He Z, Zajdlik A, St Denis JD, Assem N, Yudin AK. J. Am. Chem. Soc. 2012; 134: 9926
    • 6c He Z, Trinchera P, Adachi S, St Denis JD, Yudin AK. Angew. Chem. Int. Ed. 2012; 51: 11092
    • 6d Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. Angew. Chem. Int. Ed. 2013; 52: 8411
    • 6e Li J, Burke MD. J. Am. Chem. Soc. 2011; 133: 13774
    • 7a Shioiri T, Ninomiya K, Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
    • 7b Ninomiya K, Shioiri T, Yamada S. Tetrahedron 1974; 30: 2151
    • 7c Wolff O, Waldvogel SR. Synthesis 2004; 1303

    • Recent modification of the Curtius rearrangement:
    • 7d Lebel H, Leogane O. Org. Lett. 2005; 7: 4107
    • 7e Lebel H, Leogane O. Org. Lett. 2006; 8: 5717
    • 7f Leogane O, Lebel H. Synthesis 2009; 1935
    • 7g Leathen ML, Peterson EA. Tetrahedron Lett. 2010; 51: 2888

      Acid-catalyzed reactions of hindered isocyanates with alcohols:
    • 8a Duggan ME, Imagire JS. Synthesis 1989; 131
    • 8b Benalil A, Roby P, Carboni B, Vaultier M. Synthesis 1991; 787
    • 8c Spino C, Joly M.-A, Godbout C, Arbour M. J. Org. Chem. 2005; 70: 6118
  • 9 St Denis JD, Yudin AK. Org. Biomol. Chem. 2012; 10: 7900