T. IWAI, T. HARADA, K. HARA, M. SAWAMURA* (HOKKAIDO UNIVERSITY, SAPPORO, JAPAN)

Threefold Cross-Linked Polystyrene-Triphenylphospane Hybrids: Mono-P-Ligating Behavior and Catalytic Applications for Aryl Chloride Cross-Coupling and C(sp³)–H Borylation *Angew. Chem. Int. Ed.* **2013**, *52*, 12322–12326.

PS-PAr₃ Hybrid: Metal Complexation and Catalytic Applications

Significance: The polystyrene triarylphosphine hybrid **1** was prepared by radical emulsion polymerization of 4-*tert*-butylstyrene, divinylbenzene, and tris(4-vinylphenyl)phosphine (eq. 1). The cross-coupling of arylchlorides with phenylboronic acid and amines in the presence of Pd–**1** complexes, generated in situ, gave the corresponding coupling products (eqs. 2 and 3). Supported phosphine **1** was also effective for the iridium- or rhodium-catalyzed borylation of C(sp³)–H bonds to afford the corresponding borylated products (eqs. 4–6).

Comment: PS-PAr₃ **1** was characterized with ¹³C and ³¹P CP-MAS NMR. In the Suzuki– Miyaura cross-coupling of 4-chlorotoluene with phenylboronic acid, the catalyst was recovered by simple filtration and reused with a decrease in catalytic activity (1st use: 91% yield, 3rd reuse: 94% yield, 4th reuse: 85% yield, 5th reuse: 70% yield, 6th reuse: 47% yield, 7th reuse: 24% yield). After the third reuse, TEM analysis of the recovered catalyst showed the aggregation of palladium metal.

SYNFACTS Contributors: Yasuhiro Uozumi, Go Hamasaka Synfacts 2014, 10(2), 0215 Published online: 20.01.2014 **DOI:** 10.1055/s-0033-1340539; **Reg-No.:** Y14513SF

Category

Polymer-Supported Synthesis

Key words

cross-coupling

borylation

polystyrene

phosphine ligands

215