Synlett 2014; 25(6): 866-870
DOI: 10.1055/s-0033-1340841
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Protocol for the Carbon–Sulfur Cross-Coupling of Sulfenyl Chlorides with Arylboronic Acids using a Palladium Catalyst

Prasanta Gogoi*
Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Email: prasantanits.11@gmail.com
,
Mukul Kalita
Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Email: prasantanits.11@gmail.com
,
Pranjit Barman
Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India   Email: prasantanits.11@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 11 December 2013

Accepted after revision: 27 January 2014

Publication Date:
06 March 2014 (online)


Abstract

An efficient protocol for carbon–sulfur bond formation is developed, which involves the cross-coupling of sulfenyl chlorides and arylboronic acids catalyzed by a novel palladium–Schiff base complex. Good to high product yields, short reaction times, and mild reaction conditions are important features of this new method.

 
  • References and Notes

    • 1a Liu L, Stelmach JE, Natarajan SR, Chen M.-H, Singh SB, Schwartz CD, Fitzgerald CE, O’Keefe SJ, Zaller DM, Schmatz DM, Doherty JB. Bioorg. Med. Chem. Lett. 2003; 13: 3979
    • 1b Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
  • 2 Davis FA. J. Org. Chem. 2006; 71: 8993
    • 3a Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PS. J. Med. Chem. 1993; 36: 1291
    • 3b Silvestri R, De Martino G, La Regina G, Artico M, Massa S, Vargiu L, Mura M, Loi AG, Marceddu T, La Colla P. J. Med. Chem. 2003; 46: 2482
    • 4a Avis I, Martínez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, Ondrey F, Mulshine JL. Cancer Res. 2005; 65: 4181
    • 4b De Martino G, La Regina G, Coluccia A, Edler MC, Barbera MC, Brancale A, Wilcox E, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2004; 47: 6120
    • 4c Funk CD. Nat. Rev. Drug Discovery 2005; 4: 664
    • 4d Khandekar SS, Gentry DR, Van Aller GS, Doyle ML, Chambers PA, Konstantinidis AK, Brandt M, Daines RA, Lonsdale JT. J. Biol. Chem. 2001; 276: 30024
    • 5a Itoh T, Mase T. Org. Lett. 2004; 6: 4587
    • 5b Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803
    • 5c Kreis M, Brase S. Adv. Synth. Catal. 2005; 347: 313
    • 5d Migita T, Shimizu T, Asami Y, Shiobara J, Kato Y, Kosugi M. Bull. Chem. Soc. Jpn. 1980; 53: 1385
    • 5e Fernandez-Rodriguez MA, Shen QL, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180
    • 5f Alvaro E, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 7858
    • 5g Jiang Z, She J, Lin XF. Adv. Synth. Catal. 2009; 351: 2558
    • 5h Bhadra S, Sreedhar B, Ranu BC. Adv. Synth. Catal. 2009; 351: 2369
    • 5i Rout L, Sen TK, Punniyamurthy T. Angew. Chem. Int. Ed. 2007; 46: 5583
    • 5j Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880
    • 5k Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697
    • 5l Ku X, Huang H, Jiang H, Liu H. J. Comb. Chem. 2009; 11: 338
  • 6 Bahekar SS, Sarkate AP, Wadhai VM, Wakte PS, Shinde DB. Catal. Commun. 2013; 41: 123
  • 7 Gogoi P, Gogoi SR, Kalita M, Barman P. Synlett 2013; 24: 873
  • 8 Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 9a Lindley J. Tetrahedron 1984; 40: 1433
    • 9b Yamamoto T, Sekine Y. Can. J. Chem. 1984; 62: 1544
    • 9c Hickman RJ. S, Christie BJ, Guy RW, White TJ. Aust. J. Chem. 1985; 38: 899
    • 9d Van Bierbeek A, Gingras M. Tetrahedron Lett. 1998; 39: 6283
  • 10 Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
  • 11 Han M, Lee JT, Hahn H.-G. Tetrahedron Lett. 2011; 52: 236
  • 12 Xu H.-J, Zhao Y.-Q, Feng T, Feng Y.-S. J. Org. Chem. 2012; 77: 2878
    • 13a Kosugi M, Ogata T, Terada M, Sano H, Migita T. Bull. Chem. Soc. Jpn. 1985; 58: 3657
    • 13b Ciattini PG, Morera E, Ortar GA. Tetrahedron Lett. 1995; 36: 4133
    • 13c Ishiyama T, Mori M, Suzuki A, Miyaura N. J. Organomet. Chem. 1996; 525: 225
    • 13d Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205
    • 13e Liebeskind LS, Srogl J. Org. Lett. 2002; 4: 979
    • 13f Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2000; 2: 3229
    • 13g Aguilar A, Liebeskind LS, Pena-Cabrera E. J. Org. Chem. 2007; 72: 8539
    • 13h Goriya Y, Ramana CV. Tetrahedron 2010; 66: 7642
    • 14a Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 14b Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609
    • 14c Zheng Y, Du X, Bao W. Tetrahedron Lett. 2006; 47: 1217
    • 14d Sperotto E, van Klink GP. M, de Vries JG, van Koten G. J. Org. Chem. 2008; 73: 5625
    • 14e Xu H.-J, Zhao X.-Y, Fu Y, Feng Y.-S. Synlett 2008; 3063
    • 14f Enguehard-Gueiffier C, Thery I, Gueiffier A, Buchwald SL. Tetrahedron 2006; 62: 6042
    • 14g Bandgar BP, Bettigeri SV, Phopase J. Org. Lett. 2004; 6: 2105
    • 15a Cochran JC, Friedman SR, Frazier JP. J. Org. Chem. 1996; 61: 1533
    • 15b Borisov AV, Belsky VK, Goncharova TV, Borisova GN, Osmanov VK, Matsulevich ZhV, Frolova NG, Savin ED. Chem. Heterocycl. Compd. 2005; 41: 771
  • 16 Ligands HL1 and HL2 The ligands, 2-[2-(benzylthio)phenyliminomethyl]-4-bromophenol (HL1) and N-[2-(benzylthio)phenyl]salicyl-aldimine (HL2) were synthesized according to the literature method, see ref. 17. [PdL1Cl] (1a) 2-[2-(Benzylthio)phenyliminomethyl]-4-bromophenol (HL1) (199 mg, 0.50 mmol) was dissolved in EtOH (10 mL) and a solution of sodium tetrachloropalladate (153 mg, 0.52 mmol) in EtOH (10 mL) was added dropwise. The mixture was stirred in a water-bath at 90 °C for 0.5 h during which the color of the solution changed to bright orange–yellow. The solution was then allowed to stand for 2 h, which resulted in the formation of orange–red needle-like crystals suitable for X-ray diffraction. These were filtered, washed with 25% EtOH–H2O and dried under vacuum (10–2 Torr). The purity was assessed by TLC. Yield: 322 mg (86%); orange-red needles; mp 250 °C. IR (KBr): 1620 (s), 1439 (s), 752 (s), 560 (s) cm–1. Anal. Calcd for C20H15ONSPdBrCl: C, 44.55; H, 2.80; N, 2.60; S, 5.95. Found: C, 44.75; H, 2.90; N, 2.57; S, 5.85. [PdL2Cl] (1b) Complex 1b was prepared from N-[2-(benzylthio)phenyl]-salicylaldimine (HL2) using the same procedure as that described for 1a. Yield: 274 mg (80%); orange–red crystals; mp 256 °C. IR (KBr): 1600 (s), 1434 (s), 750 (s), 561 (s) cm–1. Anal. Calcd for C20H16ONSPdCl: C, 52.18; H, 3.47; N, 3.04; S, 6.97. Found: C, 52.23; H, 3.41; N, 3.16; S, 6.97. Sulfides 4; Typical Procedure A sealed tube was charged with sulfenyl chloride 2a (219 mg, 1 mmol), phenylboronic acid (3a) (135 mg, 1 mmol), K2CO3 (254 mg, 2 mmol), catalyst 1a (2 mol%, 10 mg) and DMF (2 mL). The mixture was stirred at 90 °C under an N2 atm for 5 h. After completion of the reaction, the mixture was cooled to r.t. and extracted with EtOAc (2 × 10 mL). The combined extracts were dried over anhydrous Na2SO4, filtered and the solvent removed under reduced pressure. The crude residue was purified by flash chromatography over silica gel to provide product 4a (166 mg, 89%).
  • 17 Kalita M, Bhattacharjee T, Gogoi P, Barman P, Kalita RD, Sarma B, Karmakar S. Polyhedron 2013; 60: 47
    • 18a Gupta KC, Sutar AK. Coord. Chem. Rev. 2008; 252: 1420
    • 18b Tamizh MM, Karvembu R. Inorg. Chem. Commun. 2012; 25: 30