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Introduction

N-Cyano-N-phenyl-p-toluenesulfonamide (NCTS) is a
bench-stable colorless solid (mp 85–87 °C)1. It is com-
mercially available and can be readily synthesized by
Kurzer’s method2 on a large scale from inexpensive
phenylurea and p-toluenesulfonyl chloride with pyridine
as solvent2 (Scheme 1). The preparation of NCTS does not
require the use of toxic cyanogen halides; thus, comparing
to other cyanating reagent, such as p-toluenesulfonyl cya-
nide,3 N-cyanobenzimidazole,4 N-cyanophthalimide4b,c

and especially metal cyanide5, NCTS can be accessed
more safely.

Scheme 1

Owing to the N–CN bond, NCTS serves as an electrophil-
ic cyanating reagent. In addition, NCTS is employed in
the direct C–H cyanation to a variety of (hetero)arenes.
The byproduct for the cyanation using NCTS is N-phenyl-
p-toluenesulfonamide, an environmentally benign com-
pound. The cyanation process features the advantages of
wide substrate scopes, safe operations, and moderate to
excellent yields.
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(A) Cyanation of Aryl and Heteroaryl Bromides through In Situ
Generated Grignard Reagents:
Beller and co-workers disclosed the first use of NCTS as cyanating
reagent.2 (Hetero)aryl bromides were converted into the correspond-
ing Grignard reagents in the presence of LiCl. Subsequent cyanation
of the Grignard reagents afforded (hetero)aryl nitriles. Applying this
method, several interesting agrochemical and pharmaceutical inter-
mediates, for example, 2-chloro-5-cyanopyridine and 2-(para-tol-
yl)benzonitrile, were synthesized.

(B) Rhodium-Catalyzed Cyanation of Aryl and Alkenyl Boronic Acids:
Catalyzed by [Rh(OH)(cod)]2, aryl and alkenyl boronic acids were
successfully cyanated by NCTS.6 The combination of this procedure
with the direct borylation of arenes and hydroboration of alkynes
yields nitriles in a more straightforward fashion.
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NCTS, [{Rh(OH)(cod)}2] (1–2.5 mol%)

K2CO3 (1 equiv), 1,4-dioxane
80 °C, 4 h

up to 90% yield
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(C) Cyanation of Indoles and Pyrroles Catalyzed by a Lewis Acid:
Wang described a direct cyanation of indoles and pyrroles by NCTS
with BF3·OEt2 as catalyst.7 The protocol does not involve a transi-
tion-metal catalyst and achieves excellent regioselectivity, provid-
ing accesss to various 3-cyanoindoles and 2-cyanopyrroles.
Additionally, the cyanation of electron-rich 1,3,5-trimethoxyben-
zene is also successful, although with low yield.

(D) Rhodium-Catalyzed Directed C–H Cyanation of Arenes:
Fu and co-workers achieved a [Cp*RhCl2]2-catalyzed directed C–H
cyanation with NCTS.8 Many different directing groups, for exam-
ple, oxime, pyridine and pyrazole can be used in the C–H cyanation
process. The substrate can be extended to heteroarenes, such as fu-
ran, thiophene, pyrrole and indole. The overall transformation has
been identified to involve a C–H activation process via a KIE exper-
iment. Independently, Anbarasan and colleagues also reported a
[Cp*RhCl2]2-catalyzed directed C–H cyanation with NCTS, but
with different additives, solvent, and directing groups.9 Both groups
developed their methods to synthesize intermediates for some im-
portant pharmaceuticals. Most recently, using the same catalytic sys-
tem, Gu et al. accomplished the directed C–H cyanation of dialkyl
phosphoryl directing arenes.10 

(E) Ruthenium(II)-Catalyzed C–H Cyanations of (Hetero)aryl
Formamide:
Employing a robust ruthenium(II) catalyst, Liu and Ackermann
achieved a direct cyanation of arenes and heteroarenes with amide as
directing group.11 A high site-selectivity was obtained for the hetero-
arene substrates. Mechanistic studies indicate a reversible C–H
metalation mechanism involving a cationic ruthenium(II) complex.
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