Dtsch Med Wochenschr 2013; 138(47): 2426-2430
DOI: 10.1055/s-0033-1343318
Prinzip & Perspektive | Review article
Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

Magnetresonanzelastographie 2.0: Hochaufgelöste Bildgebung zur Bestimmung von Elastizität, Viskosität und Druck weicher Gewebe

Magnetic resonance elastography 2.0: High resolution imaging of soft tissue elasticity, viscosity and pressure
I. Sack
1   Institut für Radiologie, Charité – Universitätsmedizin Berlin, Charitéplatz 1, Berlin
› Author Affiliations
Further Information

Publication History

28 January 2013

17 May 2013

Publication Date:
09 July 2013 (online)

Zusammenfassung

Elastographie umfasst die bildgestützte Darstellung der viskoelastischen Eigenschaften weicher Körpergewebe. Krankhafte Gewebeveränderungen wie Fibrose, Tumore oder Hypertension beeinflussen mechanische Kenngrößen derart signifikant, dass auch heute, in Zeiten moderner medizinischer Bildgebung, die manuelle Abtastung zum klinischen Alltag gehört. Dieser Artikel gibt einen kurzen Überblick über neue Methoden der Magnetresonanzelastographie (MRE) und deren klinische Anwendung. Außerdem wird auf Pilotstudien zur nichtinvasiven Druckbestimmung in Herz, Leber und Hirn eingegangen. Neue Entwicklungen zur dreidimensionalen Mehrfrequenz-MRE versprechen hochaufgelöste Elastizitätskarten, deren Kontrast die mikroskopische mechanische Verbundenheit des untersuchten Gewebes darstellt und somit eine völlig neue Quelle an Strukturinformation für die radiologische Schnittbilddiagnostik erschließt.

Abstract

Elastography is the image-based measurement of the viscoelastic properties of soft biological tissues. Diseases such as fibrosis, tumors, or hypertension significantly alter the mechanical properties of tissues. These changes are highly sensitive to manual palpation. This article reviews new methods of magnetic resonance elastography (MRE) and their potential clinical applications. Furthermore, this article discusses pilot studies investigating pressure- and compression-sensitive MRE of the heart, the liver, and the brain. New developments in three-dimensional multifrequency MRE have the potential for generating highly resolved maps of viscoelastic tissue properties. Such maps are a new source of radiological information that sensitively reflects the micromechanical structure of a biological tissue.).

 
  • Literatur

  • 1 Asbach P, Klatt D, Schlosser B et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 2010; 257: 80-86
  • 2 Catheline S, Wu F, Fink M. A solution to diffraction biases in sonoelasticity: The acoustic impulse technique. Journal of the Acoustical Society of America 1999; 105: 2941-2950
  • 3 Elgeti T, Beling M, Hamm B et al. Cardiac magnetic resonance elastography: toward the diagnosis of abnormal myocardial relaxation. Invest Radiol 2010; 45: 782-787
  • 4 Elgeti T, Beling M, Hamm B et al. Elasticity-based determination of isovolumetric phases in the human heart. J Cardiovasc Magn Reson 2010; 12: 60
  • 5 Elgeti T, Laule M, Kaufels N et al. Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 2009; 11: 44
  • 6 Elgeti T, Rump J, Papazoglou S et al. Cardiac magnetic resonance elastography – initial results. Invest Radiol 2008; 43: 762-772
  • 7 Friedrich-Rust M, Ong MF, Herrmann E et al. Real-time elastography for noninvasive assessment of liver fibrosis in chronic viral hepatitis. AJR Am J Roentgenol 2007; 188: 758-764
  • 8 Ganne-Carrie N, Ziol M, de Ledinghen V et al. Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases. Hepatology 2006; 44: 1511-1517
  • 9 Guo J, Posnansky O, Hirsch S et al. Fractal network dimension and viscoelastic powerlaw behavior: II. An experimental study of structure-mimicking phantoms by magnetic resonance elastography. Phys Med Biol 2012; 57: 4041-4053
  • 10 Hirsch S, Guo J, Papazoglou S et al. MR elastography of the liver and the spleen using a piezoelectric driver, single-shot wave-field acquisition, and multifrequency dual parameter reconstruction. Magn Reson Med 2013; DOI: 10.1002/mrm.24674.
  • 11 Hirsch S, Guo J, Reiter R et al. Towards compression-sensitive magnetic resonance elastography of the liver: Sensitivity of harmonic volumetric strain to portal hypertension. J Magn Reson Imaging 2013; DOI: 10.1002/jmri.24165.
  • 12 Hirsch S, Klatt D, Freimann F et al. In vivo measurement of volumetric strain in the human brain induced by arterial pulsation and harmonic waves. Magn Reson Med 2012; DOI: 10.1002/mrm.24499.
  • 13 Hirsch S, Posnansky O, Papazoglou S et al. Measurement of vibration-induced volumetric strain in the human lung. Magn Reson Med 2013; 69: 667-674
  • 14 Hsu SJ, Bouchard RR, Dumont DM et al. In vivo assessment of myocardial stiffness with acoustic radiation force impulse imaging. Ultrasound Med Biol 2007; 33: 1706-1719
  • 15 Huwart L, Sempoux C, Salameh N et al. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index. Radiology 2007; 245: 458-466
  • 16 Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 1931-1942
  • 17 Klatt D, Hamhaber U, Asbach P et al. Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: A study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294
  • 18 Konofagou EE, Harrigan TP, Ophir J et al. Poroelastography: imaging the poroelastic properties of tissues. Ultrasound Med Biol 2001; 27: 1387-1397
  • 19 Leiderman R, Barbone PE, Oberai AA et al. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging. Phys Med Biol 2006; 51: 6291-6313
  • 20 Nightingale K, Soo MS, Nightingale R et al. Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28: 227-235
  • 21 Papazoglou S, Hirsch S, Braun J et al. Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 2012; 57: 2329-2346
  • 22 Parker KJ, Huang SR, Musulin RA et al. Tissue response to mechanical vibrations for „sonoelasticity imaging“. Ultrasound Med Biol 1990; 16: 241-246
  • 23 Perrinez PR, Kennedy FE, Van Houten EEW et al. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography. IEEE Trans Biomed Eng 2009; 56: 598-608
  • 24 Posnansky O, Guo J, Hirsch S et al. Fractal network dimension and viscoelastic powerlaw behavior: I. A modeling approach based on a coarse-graining procedure combined with shear oscillatory rheometry. Phys Med Biol 2012; 57: 4023-4040
  • 25 Riek K, Klatt D, Nuzha H et al. Wide-range dynamic magnetic resonance elastography. J Biomech 2011; 44: 1380-1386
  • 26 Sack I. Magnetresonanz-Elastographie. Dtsch Med Wochenschr 2008; 133: 247-251
  • 27 Sack I, Fischer T, Thomas A et al. Magnetresonanzelastographie der Leber. Der Radiologe 2012; 52: 738-744
  • 28 Sack I, Rump J, Elgeti T et al. MR elastography of the human heart: Noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations. Magn Reson Med 2009; 61: 668-677
  • 29 Streitberger KJ, Sack I, Krefting D et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PloS one 2012; 7: e29888
  • 30 Tzschatzsch H, Elgeti T, Rettig K et al. In Vivo time harmonic elastography of the human heart. Ultrasound Med Biol 2012; 38: 214-222
  • 31 Wuerfel J, Paul F, Beierbach B et al. MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 2010; 49: 2520-2525
  • 32 Yin M, Talwalkar JA, Glaser KJ et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5: 1207-1213 e1202
  • 33 Ziol M, Handra-Luca A, Kettaneh A et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54