Pediatric Patients with Marfan Syndrome: Frequency of Dural Ectasia and its Correlation with Common Cardiovascular Manifestations

Zusammenfassung

Ergebnisse: Die Prävalenz der Duraektasie lag bei 90,3 %, der Aortenwurzeldilatation (z-score ≥ 2) bei 32,2 %, des MVP bei 64,5 % und der Mitralinsuffizienz bei 51,6 %. Die DSR von L5 zeigte eine Korrelation zu den intraindividuellen Z-scores (Regressionskoeffizient 3,62 ± 1,5 [0,56; 6,68]; r = 0,17; p = 0,02; F = 5,84). Z-scores ≥ 2 gingen in 100 % mit einer Duraektasie einher, MVP in 95 % und die Mitralinsuffizienz in 100 %. Der MVP zeigte in 70 % eine zusätzliche Mitralinsuffizienz.

Zusammenfassung: Da die untersuchten kardialen Manifestationen in 95 – 100 % eine Koinzidenz mit der Duraektasie zeigen, sollte die MRT zur rein diagnostischen Bildgebung des Duralsacks für Verdachtsfälle vorbehalten bleiben, in denen keine kardialen Manifestationen nachweisbar

Abstract

Purpose: Marfan syndrome (MFS) is a genetic disorder of the connective tissue. Aortic root dilatation is a main criterion of the Ghent Nosology. Dural ectasia and the presence of mitral valve prolapse (MVP) contribute to its systemic score. The purpose of this study was to investigate the frequency of dural ectasia and its correlation with cardiovascular manifestations in a pediatric study population.

Patients and methods: 119 pediatric patients with confirmed or suspected MFS were examined in the local Marfan Clinic. 31 children with MFS who underwent magnetic resonance imaging (MRI) were included. Each patient was evaluated according to the Ghent nosology. Echocardiography was used to measure the aortic root diameter and assess the presence of MVP and mitral regurgitation. Z-scores were calculated for the evaluation of the aortic root diameters. MRI was performed to determine the dural sac ratio (DSR).

Results: The prevalence of dural ectasia was 90.3 %, of aortic root dilatation 32.2 %, of MVP 64.5 % and of mitral regurgitation 51.6 %. DSR at L5 correlated with the intraindividual z-scores (slope, 3.62 ± 1.5 [0.56; 6.68]; r = 0.17; p = 0.02; F = 5.84). Z-scores ≥ 2 were accompanied by dural ectasia in 100 %, MVP in 95 % and mitral regurgitation in 100 % of cases. MVP was accompanied by mitral regurgitation in 70 % of cases.

Conclusion: As the examined cardiac manifestations show a coincidence with dural ectasia in 95 – 100 % of cases, MRI for diagnostic dural sac imaging should be reserved for MFS suspicions with the absence of those manifestations in order to establish the diagnosis according to the Ghent criteria. Thus, the present study supports the recent downgrading of dural ectasia to a contributor to the systemic score.

Authors

S. Veldhoen1,2, V. Stark2, G. C. Mueller2, T. Derlin1, T. A. Bley3, J. Weil2, Y. von Kodolitsch4, T. S. Mir2

Affiliations

1 Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
2 Department of Pediatric Cardiology, University Heart Center Hamburg, Germany
3 Department of Diagnostic and Interventional Radiology, University Medical Center Würzburg, Germany
4 Department of Cardiology, University Heart Center Hamburg, Germany

Key words

● aorta
● cardiac
● genetic defects
● echocardiography
● MR imaging
● connective tissue disorders

Received 17.1.2013
Accepted 3.7.2013

Bibliography

DOI http://dx.doi.org/10.1055/s-0033-1350421
Published online: 16.9.2013
Fortschr Röntgenstr 2014; 186: 61–66 © Georg Thieme Verlag KG Stuttgart · New York · ISSN 1438-9029

Correspondence

Herr Dr. Simon Veldhoen
Institut für Röntgendiagnostik, Universitätsklinikum Würzburg
Josef-Schneider-Straße 2
97080 Würzburg
Germany
Tel.: ++ 49/17/02 41 42 72
Fax: ++ 49/931 12 01 63 40 01
Simon.Veldhoen@Roentgen.uni-Wuerzburg.de

61
Fortschr Röntgenstr 2014; 186: 61–66

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.
Marfan syndrome (MFS) is a genetic disorder of the connective tissue with autosomal-dominant inheritance. It is usually caused by mutations in the Fibrillin-1 gene (FBN1) and has a prevalence of one in 5000 – 10 000 individuals [1]. It causes a wide spectrum of symptoms of varying severity. Beside the ocular and skeletal system, the cardiovascular manifestations with their life-threatening complications are the focus of diagnostics and monitoring. Progressive dilation of the aortic root within the region of the sinuses of Valsalva is the most common complication. It has the potential to evoke aortic valve dysfunction and aortic dissection, which is the main cause of death in undetected Marfan syndrome [2]. The presence of mitral valve prolapse (MVP) represents another frequent cardiac manifestation. It is associated with an increased risk of progression to severe mitral valve regurgitation and endocarditis in adults and is therefore an important cardiac feature of MFS [3]. In consideration of the life expectancy of 32 years without therapy, early diagnosis is a key issue in the medical treatment of MFS [2]. Although there are molecular tests for FBN1 mutations, diagnosis also depends on clinical symptoms because of individual differences in the severity of the associated phenotype of a single mutation [4, 5]. Furthermore, a pathogenic mutation cannot be found in every individual. The Ghent nosology, which was recently revised, summarizes the typical symptoms and allows a standardized and reproducible diagnosis of MFS [6]. Lumbar sacral dural ectasia contributes to the systemic score of the Ghent nosology. It is defined by a disparity between the diameters of the dural sac and the vertebral body of the associated spine segment [7, 8]. Beside reports of lower back pain associated with dural ectasia and development of anterior meningoeles, follow-up studies did not reveal complications of dural ectasia, e.g. spondylolisthesis or scoliosis, thus expressing its mainly diagnostic relevance [9 – 11]. Aortic root dilation and the presence of MVP are also considered within the Ghent nosology. The purpose of this study was to investigate the frequency of dural ectasia and its correlation with frequent cardiovascular manifestations in an exclusive pediatric study collective with confirmed MFS. The latest downgrading of dural ectasia as a diagnostic criterion of MFS in the recently revised Ghent nosology will also be evaluated.

Patients and Methods

Study population

We investigated 119 pediatric patients with confirmed or suggested Marfan syndrome, who attended the local Marfan Clinic.

All patients underwent a standardized diagnostic program involving the departments of orthopedics, ophthalmology, radiology and pediatric cardiology of the University Medical Center and the University Heart Center. Each patient was evaluated according to the Ghent criteria [6]. Of these 119 patients, 31 children (m = 16; f = 15; age 1 – 18 years; mean age 11.5 years) were diagnosed with MFS and underwent magnetic resonance imaging (MRI) for the diagnosis of dural ectasia, which were the two conditions for inclusion into the study group (Table 1). All patients in the study group underwent genetic testing with the result of FBN-1 mutation. 19 children were naive to aortoprotective pharmacotherapy, 7 were treated with β-blockers and 5 with AT1 antagonists (Valsartan).

Following informed consent and approval by the institutional review board, the study was performed according to the Declaration of Helsinki [12].

Measuring of the aortic root and the mitral valve

Two-dimensional echocardiography was used to measure the diameters of the aortic root in the parasternal long-axis orientation (Fig. 1a). The body surface was calculated using the Dubois formula [13]. Aortic root dilation was determined by the presence of a measurable disproportion between the diameter of the sinuses of Valsalva and the body surface. Z-scores were used to detect those disproportions with z defined as the number of standard deviations greater than or less than the predicted mean diameter of healthy children as described elsewhere [14]. Z-scores ≥ 2 were defined as aortic root dilation. For evaluation of echocardiographic measures, Roman et al. and Gautier et al. published nomograms illustrating the relationship between aortic root and body surface during adolescence (Fig. 2, 3) [14, 15]. M-mode, two-dimensional and color-coded transthoracic echocardiography was used to determine the presence of MVP. Any late systolic prolapse > 2 mm on M-mode or leaflet displacement > 2 mm, irrespective of a leaflet thickness ≤ 5 mm on two-dimen-
sional echocardiography from the apical four-chamber view, was used to determine MVP (Fig. 1b) [6, 16–18]. The presence of mitral valve regurgitation was also recorded.

Measuring of the dural sac

MRI was performed to detect lumbosacral dural ectasia [19]. Therefore, the sagittal dural sac diameter was divided by the midsagittal vertebral body diameter of the associated spine segment to calculate the dural sac ratio (DSR) (Fig. 4) [20]. According to Habermann et al., cut-off values for the presence of dural ectasia of 0.42 at the level of L5 and 0.51 at the level of S1 were used [7].

Statistical analysis

Linear regression analysis and Pearson’s correlation were used to test for dependences between the aortic root diameter, mitral valve prolapse, mitral regurgitation and the dural sac ratio. In addition, the F-test was used to determine the F-value. P-values < 0.05 were considered statistically significant. Quantitative data is presented as absolute numbers or as mean values with their standard deviation. In part, we added confidence intervals in square brackets. Relative data is presented in percentage or mentioned explicitly. Filemaker software vers. 10 pro advanced was used for data collection. Statistical analysis was performed using GraphPad Prism vers. 5.0 and Microsoft Excel 2011. Figures were created using GraphPad Prism vers. 5.0 and tables were created using Microsoft Excel 2011.

Results

Prevalence of dural ectasia

Using the cut-off values defined by Haberman et al. [7], a pathological DSR was seen at spine segment L5 in 28 children (90.3%) with MFS and at the level of S1 in 26 patients (83.9%) (Table 2).

Prevalence of aortic root dilation and correlation to dural ectasia

32.3% (n = 10) of the patients showed pathologic z-scores ≥2 at the sinuses of Valsalva, defined as dilation of the aortic root. 100% (n = 10) of the study population with a pathologic z-score at the sinuses of Valsalva presented with dural ectasia at L5 or S1. For L5, dural ectasia was found in 100% (n = 10) of the cases and for S1 in 80.0% (n = 8) of the cases. Linear regression analysis showed a regression coefficient (slope) of 3.62 ± 1.5 [0.56; 6.68] with a correlation coefficient of 0.17 between the intraindividual z-scores at the sinuses of Valsalva and the DSR at L5 (p = 0.02; F = 5.84). No similar dependence was found for S1. The regression coefficient was 1.32 ± 1.0 [–0.72; 3.36] with a correlation of 0.06 (p > 0.05; F = 1.75), respectively. Analyses of subgroups based on pharmacotherapy status (no therapy, β-blockers, AT1 antagonists) revealed no significant relationship.
No significant correlations between the DSR at spine segment L5 or S1 and the measured absolute diameter of the aortic root at the sinuses of Valsalva were found. Particularly, the regression coefficient for L5 was $-0.01 \pm 0.48 [-0.98; 0.96]$ and the correlation coefficient was $-0.005 (p > 0.05; F = 0.0006)$. For S1, the regression coefficient was $0.23 \pm 0.29 [-0.37; 0.84]$ and the correlation coefficient was $0.15 (p > 0.05; F = 0.63)$.

Prevalence of MVP and correlation to dural ectasia

64.5% ($n = 20$) of the children in the study collective fulfilled the criteria of MVP within echocardiography from the apical four-chamber view. 95% ($n = 19$) of the children with MVP presented with dural ectasia at L5 or S1. At L5, dural ectasia was found in 95% ($n = 19$) of the cases and at S1 in 90% ($n = 18$) of the cases.

Regarding the total study population, linear regression analyses provided no significant dependences between the DSR at spine segment L5 or S1 and the presence of MVP. For L5, a regression coefficient of $0.12 \pm 0.50 [-0.91; 1.14]$ with a correlation of 0.04 ($p > 0.05; F = 0.05$) was calculated. For S1, the regression coefficient was $0.21 \pm 0.31 [-0.42; 0.85]$ with a correlation coefficient of 0.13 ($p > 0.05; F = 0.47$). Analyses of subgroups based on pharmacotherapy status (no therapy, β-blockers, AT1 antagonists) revealed no alterations concerning the results. No significant relationships were found.

Prevalence of mitral regurgitation and correlation to dural ectasia

51.6% ($n = 16$) of the diagnosed children presented with first-degree mitral valve regurgitation. In the case of detected MVP, additional mitral regurgitation was found in 70% ($n = 14$ of 20) of the cases. No mitral regurgitation greater than first-degree was observed in the study population. 100% ($n = 16$) of the study population with diagnosed mitral regurgitation presented with dural ectasia at L5 as well as S1.

Regarding the total study population, linear regression analyses showed no significant dependences between the DSR at spine segment L5 or S1 and the presence of mitral regurgitation. For L5, a regression coefficient of $0.3 \pm 0.52 [-0.76; 1.36]$ with a correlation of 0.01 ($p > 0.05; F = 0.34$) was calculated. For S1, the regression coefficient was $0.49 \pm 0.31 [-0.15; 1.14]$ with a correlation coefficient of 0.08 ($p > 0.05; F = 2.47$). Analyses of subgroups based on pharmacotherapy status (no therapy, β-blockers, AT1
manifestations within a pediatric patient population. Investigated correlations between dural ectasia and cardiovascular root dilation [22, 23]. To our knowledge, no studies have investigated the necessity of additional dural imaging in those patients. Summarized, the authors recommend reserving dural imaging of the dural sac ratio at spine segments L5 and S1 and the absolute diameter of the aortic root at the sinuses of Valsalva in pediatric patients with confirmed MFS. As Fattori et al. could not reveal a dependence concerning these measurements within a study that included 83 adult MFS patients, these results can be transferred to pediatric patients [10]. However, in pediatric medicine z-scores gained acceptance in the evaluation of the aortic root during the last years due to consideration of normal aortic growth and gender by implementation of correction factors [14, 25]. Prospecting the relationship between those z-scores and the DSR revealed a correlation between the intradividual z-score and the DSR at the spine level of L5. The DSR increased with the calculated z-score. However, with r = 0.17 the observed correlation is moderate and a prediction of one parameter in dependence of the other is questionable for a single patient. Nonetheless, 100 % of the examined children with diagnosed aortic root dilation by a z-score ≥ 2 showed lumbosacral dural ectasia. Respectively, 95 % of the children with MVP and 100 % with mitral regurgitation showed dural ectasia. Deducing from these results, additional imaging of the dural sac does not seem to be necessary in the case of aortic root dilation diagnosed by echocardiography during adolescence. Concerning very young children, this allows for abstaining from necessary sedation during MRI [26]. Nonetheless, in the case of MFS suspicion and the absence of aortic root dilation, dural imaging using MRI can be sensible to substantiate the clinical diagnosis. That raises the question as to how many patients require additional MR imaging of the dural sac. In this context, we observed dural ectasia in 58.1 % of the children with FBN1 mutation and the absence of aortic root dilation. That underlines the necessity of additional dural imaging in those patients. Summarized, the authors recommend reserving dural imaging for children with MFS suspicion and the simultaneous absence of aortic root dilation.

The prevalence of mitral valve prolapse in MFS has been indicated within a range from 54 % to 88 % over all ages [27 – 29]. The discrepancies between the cohorts could partly be explained by nonspecific diagnostic criteria being used in the past [30, 31]. In our study 20 children with MFS (64.5 %) presented with MVP matching this range. To our knowledge, there is only one more study that indicates the prevalence of MVP exclusively for pediatric patients with MFS. Rybczynski et al. conducted a large study among 204 MFS patients with a mean follow-up time of 4.4 ± 4.3 years [3]. In a subgroup of 23 patients aged 0 – 10 years (mean 4.5 ± 3 years), the prevalence of MVP was 22 %. A subgroup of 35 patients aged 11 – 20 years (mean 15.7 ± 2.8 years) showed a prevalence of 43 %. However, only 17 % and 46 %, respectively, of patients in these subgroups had a proven FBN1 mutation, which might explain the difference in prevalence between the two studies. Interestingly, 95 % of the children with diagnosed MVP presented with lumbosacral dural ectasia. Furthermore, the 70 % concordance of MVP and first-degree mitral regurgitation is worth mentioning. The overall prevalence of mitral regurgitation was 51.6 % and dural ectasia was found in all of these cases. The risk of severe mitral regurgitation and complications, e. g. endocarditis due to preceding MVP, is already known [3]. The present results show that the development of regurgitation seems to begin already in infancy and adolescence.

Lumbosacral dural ectasia was a major criterion of the original Ghent nosology, but its importance has been downgraded in the latest revision in 2010. “Dural ectasia is a sensitive but not a specific sign of MFS and, as such, is no longer considered on equal footing with lens dislocation or aortic root enlargement” [6]. Accordingly, dural ectasia is no longer a major criterion of the Ghent nosology but now contributes to a score of systemic features [6, 21]. However, a pathognomonic mutation cannot be found in every individual with the disease and the detection of dural ectasia can still be essential to substantiate the clinical diagnosis of MFS in those cases as it is the second most common feature of the syndrome after aortic root dilation [22, 23]. To our knowledge, no studies have investigated correlations between dural ectasia and cardiovascular manifestations within a pediatric patient population. The high prevalence of lumbosacral dural ectasia in MFS patients has been known for years and is again confirmed by the present study that showed a pathologic DSR in 90.3 % of the children [24]. The present study revealed no linear dependence between the dural sac ratio at spine segments L5 and S1 and the absolute diameter of the aortic root at the sinuses of Valsalva in pediatric patients with confirmed MFS.

Discussion

Lumbosacral dural ectasia was a major criterion of the original Ghent nosology, but its importance has been downgraded in the latest revision in 2010. “Dural ectasia is a sensitive but not a specific sign of MFS and, as such, is no longer considered on equal footing with lens dislocation or aortic root enlargement” [6]. Accordingly, dural ectasia is no longer a major criterion of the Ghent nosology but now contributes to a score of systemic features [6, 21]. However, a pathognomonic mutation cannot be found in every individual with the disease and the detection of dural ectasia can still be essential to substantiate the clinical diagnosis of MFS in those cases as it is the second most common feature of the syndrome after aortic root dilation [22, 23]. To our knowledge, no studies have investigated correlations between dural ectasia and cardiovascular manifestations within a pediatric patient population. The high prevalence of lumbosacral dural ectasia in MFS patients has been known for years and is again confirmed by the present study that showed a pathologic DSR in 90.3 % of the children [24]. The present study revealed no linear dependence between the

Table 2 Aortic root diameter, presence of MVP and dural sac ratios for L5 and S1 in 31 patients.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Bulbus diameter (cm)</th>
<th>MVP (+/–)</th>
<th>DSR L5</th>
<th>DSR S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.2</td>
<td>+</td>
<td>0.43</td>
<td>0.48</td>
</tr>
<tr>
<td>2</td>
<td>2.7</td>
<td>+</td>
<td>0.56</td>
<td>0.52</td>
</tr>
<tr>
<td>3</td>
<td>2.8</td>
<td>+</td>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
<td>–</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
<td>+</td>
<td>0.56</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td>2.5</td>
<td>–</td>
<td>0.30</td>
<td>0.40</td>
</tr>
<tr>
<td>7</td>
<td>4.3</td>
<td>+</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>8</td>
<td>2.7</td>
<td>–</td>
<td>0.62</td>
<td>0.74</td>
</tr>
<tr>
<td>9</td>
<td>3.2</td>
<td>+</td>
<td>0.95</td>
<td>1.38</td>
</tr>
<tr>
<td>10</td>
<td>3.3</td>
<td>+</td>
<td>0.63</td>
<td>0.80</td>
</tr>
<tr>
<td>11</td>
<td>2.9</td>
<td>–</td>
<td>0.51</td>
<td>0.90</td>
</tr>
<tr>
<td>12</td>
<td>3.4</td>
<td>–</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>13</td>
<td>3.3</td>
<td>+</td>
<td>0.69</td>
<td>0.89</td>
</tr>
<tr>
<td>14</td>
<td>3.2</td>
<td>+</td>
<td>0.60</td>
<td>1.30</td>
</tr>
<tr>
<td>15</td>
<td>2.9</td>
<td>–</td>
<td>0.80</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>3.0</td>
<td>+</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>17</td>
<td>2.9</td>
<td>+</td>
<td>0.56</td>
<td>0.53</td>
</tr>
<tr>
<td>18</td>
<td>2.4</td>
<td>–</td>
<td>0.52</td>
<td>0.55</td>
</tr>
<tr>
<td>19</td>
<td>2.6</td>
<td>+</td>
<td>0.56</td>
<td>0.78</td>
</tr>
<tr>
<td>20</td>
<td>2.6</td>
<td>–</td>
<td>1.09</td>
<td>1.08</td>
</tr>
<tr>
<td>21</td>
<td>2.8</td>
<td>+</td>
<td>0.89</td>
<td>1.30</td>
</tr>
<tr>
<td>22</td>
<td>3.6</td>
<td>–</td>
<td>0.45</td>
<td>0.50</td>
</tr>
<tr>
<td>23</td>
<td>2.6</td>
<td>+</td>
<td>0.46</td>
<td>0.65</td>
</tr>
<tr>
<td>24</td>
<td>3.2</td>
<td>–</td>
<td>0.70</td>
<td>1.20</td>
</tr>
<tr>
<td>25</td>
<td>2.3</td>
<td>+</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>26</td>
<td>3.2</td>
<td>+</td>
<td>0.47</td>
<td>0.52</td>
</tr>
<tr>
<td>27</td>
<td>2.8</td>
<td>+</td>
<td>0.42</td>
<td>0.63</td>
</tr>
<tr>
<td>28</td>
<td>2.7</td>
<td>–</td>
<td>0.36</td>
<td>0.41</td>
</tr>
<tr>
<td>29</td>
<td>2.4</td>
<td>+</td>
<td>0.76</td>
<td>0.81</td>
</tr>
<tr>
<td>30</td>
<td>2.8</td>
<td>–</td>
<td>0.48</td>
<td>0.52</td>
</tr>
<tr>
<td>31</td>
<td>3.5</td>
<td>+</td>
<td>0.77</td>
<td>1.10</td>
</tr>
</tbody>
</table>
cases. Coincidence of MVP and mitral regurgitation was found in 70% of the cases. Mitral regurgitation was accompanied by dural ectasia in 100% of the cases. Deduced from these results, additional MRI with the single purpose of dural sac imaging should be reserved for MFS suspensions with the absence of aortic root dilation, mitral valve prolapse and mitral regurgitation as these cardiac manifestations show a coincidence with dural ectasia in 95–100% of cases. By this change in diagnostic approach, young children can forego the sedation necessary for MRI. In conclusion, the results support the recent downgrading of dural ectasia to a contributor to the systemic score in the revised Ghent nosology. Dural sac imaging should be reserved for MFS suspicions to a contributor to the systemic score in the revised Ghent nosology.

Study limitations
The small pediatric study population as a limiting factor in our analyses is worth mentioning. Although a larger number of patients attended the pediatric Marfan Clinic, an MRI exam could not be performed for every patient. In part, MRI was not necessary to confirm the diagnosis of MFS or the children were too young, so that sedation would have been necessary to guarantee sufficient image quality. If sustainable, MRI exams were planned at a later time in those cases to avoid the complications of administering a sedative. Because of the small size of the study group, we continued the study to be able to perform a re-evaluation based on a larger number of pediatric patients. It would be useful to analyze different age-related study groups, which this study could not consider due to the small number of patients.

Another aspect that may have influenced the study is the use of transthoracic echocardiography, which is dependent on the examiner and the surrounding conditions. In particular, the examination of very young children is dependent on their cooperation and safe reproducibility of single exams cannot be guaranteed. MRI might be a useful alternative for ensuring consistent imaging quality but can be difficult to use on very young children due to the need for sedation [31].

Conclusion
The presented study supports the recent downgrading of dural ectasia to a contributor to the systemic score in the revised Ghent nosology. Dural sac imaging should be reserved for MFS suspensions with the absence of aortic root dilation, mitral valve prolapse and mitral regurgitation. However, a re-evaluation based on a greater number of children, with age-related study groups as well as a comparison group of healthy children is desirable.

References
12 World Medical Association Declaration of Helsinki: 2008
16 Devereux RB, Kramer-Fox R, Shear MK et al. Diagnosis and classification of severity of mitral valve prolapse: methodologic, biologic, and prognostic considerations. Am. Heart J 1987; 113: 1265–1280