Planta Med 2013; 79(15): 1408-1412
DOI: 10.1055/s-0033-1350698
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Potentiating Effect of Glabridin on GABAA Receptor-Mediated Responses in Dorsal Raphe Neurons

Zhenhua Jin
1   Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
,
Sojin Kim
1   Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
,
Suengmok Cho
2   Korea Food Research Institute, Seongnam, Republic of Korea
,
In-Ho Kim
2   Korea Food Research Institute, Seongnam, Republic of Korea
,
Daeseok Han
2   Korea Food Research Institute, Seongnam, Republic of Korea
,
Young-Ho Jin
1   Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
› Author Affiliations
Further Information

Publication History

received 24 May 2013
revised 03 July 2013

accepted 08 July 2013

Publication Date:
23 August 2013 (online)

Abstract

Flavonoid-rich ethanol extracts of licorice root have sedative and anxiolytic effects. Glabridin is a major flavonoid component from licorice which we evaluated by examining GABA responses in acutely isolated dorsal raphe neurons of the rat. Neurons were recorded with patch-clamp methods at a holding potential of − 50 mV. Glabridin potentiated GABA-induced responses by positively modulating GABAA receptor responses with different concentration range. GABA (2 × 10−6 M)-evoked currents were potentiated in a stepwise pattern increasing glabridin concentration. Between 10−12 and 10−8 M glabridin increased GABA responses by about 140 % of the control. At concentrations above 10− 7 M, a much larger, dose-dependent potentiation occurred before reaching a plateau at 3 × 10−6 M glabridin. A hypnotic drug, zolpidem, also induced biphasic concentration-potentiation relationship. The glabridin potentiation ratio was 2.2 times larger than the maximum potentiation to the benzodiazepine receptor full agonist diazepam. Benzodiazepine receptor antagonist, flumazenil (3 × 10−7 M), failed to inhibit glabridin (3 × 10−7 M)-induced potentiation. This result implies that glabridin may exhibit sedative and hypnotic effects by potentiating GABAergic inhibition in dorsal raphe neurons by GABAA receptor actions.

 
  • References

  • 1 Luk KC, Stern L, Weigele M, OʼBrien RA, Spirt N. Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod 1983; 46: 852-861
  • 2 Fuhrman B, Buch S, Vaya J, Belinky PA, Coleman R, Hayek T, Aviram M. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 1997; 66: 267-275
  • 3 Tamir S, Eizenberg M, Somjen D, Izrael S, Vaya J. Estrogen-like activity of glabrene and other constituents isolated from licorice root. J Steroid Biochem Mol Biol 2001; 78: 291-298
  • 4 Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 1998; 11: 355-361
  • 5 Kang JS, Yoon YD, Cho IJ, Han MH, Lee CW, Park SK, Kim HM. Glabridin, an isoflavan from licorice root, inhibits inducible nitric-oxide synthase expression and improves survival of mice in experimental model of septic shock. J Pharmacol Exp Ther 2005; 312: 1187-1194
  • 6 Yi PL, Lin CP, Tsai CH, Lin JG, Chang FC. The involvement of serotonin receptors in suanzaorentang-induced sleep alteration. J Biomed Sci 2007; 14: 829-840
  • 7 Cho S, Park JH, Pae AN, Han D, Kim D, Cho NC, No KT, Yang H, Yoon M, Shimizu M, Baek NI. Hypnotic effects and GABAergic mechanism of licorice (Glycyrrhiza glabra) ethanol extract and its major flavonoid constituent glabrol. Bioorg Med Chem 2012; 20: 3493-3501
  • 8 Medina JH, Paladini AC, Wolfman C, Levi de Stein M, Calvo D, Diaz LE, Peña C. Chrysin (5, 7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol 1990; 40: 2227-2231
  • 9 Viola H, Wasowski C, Levi de Stein M, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC. Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepine receptors-ligand with anxiolytic effects. Planta Med 1995; 61: 213-216
  • 10 Wolfman C, Viola H, Paladini A, Dajas F, Medina JH. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea . Pharmacol Biochem Behav 1994; 47: 1-4
  • 11 Dekermendjian K, Kahnberg P, Witt MR, Sterner O, Nielsen M, Liljefors T. Structure-activity relationships and molecular modeling analysis of flavonoids binding to the benzodiazepine site of the rat brain GABA(A) receptor complex. J Med Chem 1999; 42: 4343-4350
  • 12 Nielsen M, Frøkjaer S, Braestrup C. High affinity of the naturally-occurring biflavonoid, amentoflavon, to brain benzodiazepine receptors in vitro . Biochem Pharmacol 1988; 37: 3285-3287
  • 13 Kavvadias D, Sand P, Youdim KA, Qaiser MZ, Rice-Evans C, Baur R, Sigel E, Rausch WD, Riederer P, Schreier P. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood-brain barrier and exhibits anticonvulsive effects. Br J Pharmacol 2004; 142: 811-820
  • 14 Hui KM, Huen MS, Wang HY, Zheng H, Sigel E, Baur R, Ren H, Li ZW, Wong JT, Xue H. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 2002; 64: 1415-1424
  • 15 Hanrahan JR, Chebib M, Johnston GA. Flavonoid modulation of GABA(A) receptors. Br J Pharmacol 2011; 163: 234-245
  • 16 Goutman JD, Waxemberg MD, Doñate-Oliver F, Pomata PE, Calvo DJ. Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. Eur J Pharmacol 2003; 461: 79-87
  • 17 Adam K, Adamson L, Brezinová V, Hunter WM. Nitrazepam: lastingly effective but trouble on withdrawal. Br Med J 1976; 1: 1558-1560
  • 18 Gonzaleza JP, McCulloch AJ, Nicholls PJ, Sewell RD, Tekle A. Subacute benzodiazepine treatment: observations on behavioural tolerance and withdrawal. Alcohol Alcohol 1984; 19: 325-332
  • 19 Trulson ME, Jacobs BL. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 1979; 163: 135-150
  • 20 Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 2000; 20: 4217-4225
  • 21 Karim N, Curmi J, Gavande N, Johnston GA, Hanrahan JR, Tierney ML, Chebib M. 2′-Methoxy-6-methylflavone: a novel anxiolytic and sedative with subtype selective activating and modulating actions at GABA(A) receptors. Br J Pharmacol 2012; 165: 880-896
  • 22 Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R. In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 1986; 384: 145-155
  • 23 Chan CY, Farb DH. Modulation of neurotransmitter action: control of the gamma-aminobutyric acid response through the benzodiazepine receptor. J Neurosci 1985; 5: 2365-2373
  • 24 Bai D, Zhu G, Pennefather P, Jackson MF, MacDonald JF, Orser BA. Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by gamma-aminobutyric acid(A) receptors in hippocampal neurons. Mol Pharmacol 2001; 59: 814-824
  • 25 Nusser Z, Mody I. Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 2002; 87: 2624-2628
  • 26 Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 2004; 101: 3662-3667
  • 27 Wallner M, Hanchar HJ, Olsen RW. Low-dose alcohol actions on alpha4beta3delta GABAA receptors are reversed by the behavioral alcohol antagonist Ro15-4513. Proc Natl Acad Sci USA 2006; 103: 8540-8545
  • 28 Wei W, Zhang N, Peng Z, Houser CR, Mody I. Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 2003; 23: 10650-10661
  • 29 Marder M, Viola H, Wasowski C, Fernández S, Medina JH, Paladini AC. 6-methylapigenin and hesperidin: new valeriana flavonoids with activity on the CNS. Pharmacol Biochem Behav 2003; 75: 537-545
  • 30 Avallone R, Zanoli P, Puia G, Kleinschnitz M, Schreier P, Baraldi M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla . Biochem Pharmacol 2000; 59: 1387-1394
  • 31 Cho SM, Shimizu M, Lee CJ, Han DS, Jung CK, Jo JH, Kim YM. Hypnotic effects and binding studies for GABA(A) and 5-HT(2C) receptors of traditional medicinal plants used in Asia for insomnia. J Ethnopharmacol 2010; 132: 225-232
  • 32 Trulson ME, Preussler DW, Howell GA, Frederickson CJ. Raphe unit activity in freely moving cats: effects of benzodiazepines. Neuropharmacology 1982; 21: 1045-1050
  • 33 Yu XY, Lin SG, Zhou ZW, Chen X, Liang J, Yu XQ, Chowbay B, Wen JY, Duan W, Chan E, Li XT, Cao J, Li CG, Xue CC, Zhou SF. Role of P-glycoprotein in limiting the brain penetration of glabridin, an active isoflavan from the root of Glycyrrhiza glabra . Pharm Res 2007; 24: 1668-1690
  • 34 Cho S, Kim S, Jin Z, Yang H, Han D, Baek NI, Jo J, Cho CW, Park JH, Shimizu M, Jin YH. Isoliquiritigenin, a chalcone compound, is a positive allosteric modulator of GABAA receptors and shows hypnotic effects. Biochem Biophys Res Commun 2011; 413: 637-642
  • 35 Jin YH, Cahill EA, Fernandes LG, Wang X, Chen W, Smith SM, Andresen MC. Optical tracking of phenotypically diverse individual synapses on solitary tract nucleus neurons. Brain Res 2010; 1312: 54-66
  • 36 Murase K, Ryu PD, Randic M. Excitatory and inhibitory amino acids and peptide-induced responses in acutely isolated rat spinal dorsal horn neurons. Neurosci Lett 1989; 103: 56-63
  • 37 Horn R, Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 1988; 92: 145-159
  • 38 Akaike N, Harata N. Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 1994; 44: 433-473