Semin Respir Crit Care Med 2013; 34(06): 822-836
DOI: 10.1055/s-0033-1358552
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Personalizing Therapy in Advanced Non–Small Cell Lung Cancer

Liza C. Villaruz
1   Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
,
Timothy F. Burns
1   Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
,
Vasilis S. Ramfidis
1   Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
,
Mark A. Socinski
1   Lung and Thoracic Malignancies Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
20 November 2013 (online)

Abstract

The recognition that non–small cell lung cancer (NSCLC) is not a single disease entity, but rather a collection of distinct molecularly driven neoplasms, has permanently shifted the therapeutic landscape of NSCLC to a personalized approach. This personalization of NSCLC therapy is typified by the dramatic response rates seen in EGFR mutant NSCLC when treated with targeted tyrosine kinase inhibitor therapy and in ALK translocation–driven NSCLC when treated with ALK inhibitors. Targeted therapeutic approaches in NSCLC necessitate consideration of more invasive biopsy techniques aimed at providing sufficient tissue for both histological determination and molecular profiling in all patients with stage IV disease both at the time of diagnosis and at the time of disease progression. Comprehensive genotyping efforts have identified oncogenic drivers in 62% lung adenocarcinomas and an increasing proportion of squamous cell carcinomas of the lung. The identification of these oncogenic drivers and the triage of patients to clinical trials evaluating novel targeted therapeutic approaches will increasingly mold a landscape of personalized lung cancer therapy where each genotype has an associated targeted therapy. This review outlines the state of personalized lung cancer therapy as it pertains to individual NSCLC genotypes.

 
  • References

  • 1 Howlader N, Noone AM, Krapcho M , et al. SEER Stat Fact Sheets: Lung and Bronchus. 2010. Access date: October 31, 2013. http://seercancergov/csr/1975_2008/
  • 2 Hopwood P, Stephens RJ ; The Medical Research Council (MRC) Lung Cancer Working Party. Symptoms at presentation for treatment in patients with lung cancer: implications for the evaluation of palliative treatment. Br J Cancer 1995; 71 (3) 633-636
  • 3 Burdett S, Stephens R, Stewart L , et al; NSCLC Meta-Analyses Collaborative Group. Chemotherapy in addition to supportive care improves survival in advanced non-small-cell lung cancer: a systematic review and meta-analysis of individual patient data from 16 randomized controlled trials. J Clin Oncol 2008; 26 (28) 4617-4625
  • 4 Burdett S, Stewart L, Pignon J-P. Chemotherapy in non-small cell lung cancer: an update of an individual patient data-based meta-analysis. J Thorac Cardiovasc Surg 2005; 129 (5) 1205 , author reply 1205–1206
  • 5 Rapp E, Pater JL, Willan A , et al. Chemotherapy can prolong survival in patients with advanced non-small-cell lung cancer—report of a Canadian multicenter randomized trial. J Clin Oncol 1988; 6 (4) 633-641
  • 6 Non-small Cell Lung Cancer Collaborative Group. Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. BMJ 1995; 311 (7010) 899-909
  • 7 Fossella F, Pereira JR, von Pawel J , et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol 2003; 21 (16) 3016-3024
  • 8 Kelly K, Crowley J, Bunn Jr PA , et al. Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non—small-cell lung cancer: a Southwest Oncology Group trial. J Clin Oncol 2001; 19 (13) 3210-3218
  • 9 Scagliotti GV, De Marinis F, Rinaldi M , et al; Italian Lung Cancer Project. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol 2002; 20 (21) 4285-4291
  • 10 Schiller JH, Harrington D, Belani CP , et al; Eastern Cooperative Oncology Group. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002; 346 (2) 92-98
  • 11 Zatloukal P, Petruzelka L, Zemanová M , et al. Gemcitabine plus cisplatin vs. gemcitabine plus carboplatin in stage IIIb and IV non-small cell lung cancer: a phase III randomized trial. Lung Cancer 2003; 41 (3) 321-331
  • 12 Lynch TJ, Bell DW, Sordella R , et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350 (21) 2129-2139
  • 13 Paez JG, Jänne PA, Lee JC , et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304 (5676) 1497-1500
  • 14 Kwak EL, Bang YJ, Camidge DR , et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363 (18) 1693-1703
  • 15 Bergethon K, Shaw AT, Ou SH , et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012; 30 (8) 863-870
  • 16 Ou SI, Bang Y, Camidge DR , et al. Efficacy and safety of crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8032
  • 17 Dogan S, Shen R, Ang DC , et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res 2012; 18 (22) 6169-6177
  • 18 Centers for Disease Control and Prevention (CDC). Annual smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 1997–2001. MMWR Morb Mortal Wkly Rep 2005; 54 (25) 625-628
  • 19 Jemal A, Siegel R, Ward E , et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58 (2) 71-96
  • 20 Thun MJ, Henley SJ, Burns D, Jemal A, Shanks TG, Calle EE. Lung cancer death rates in lifelong nonsmokers. J Natl Cancer Inst 2006; 98 (10) 691-699
  • 21 Johnson BE, Kris MG, Berry LD , et al. A multicenter effort to identify driver mutations and employ targeted therapy in patients with lung adenocarcinomas: The Lung Cancer Mutation Consortium (LCMC) [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8019
  • 22 Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008; 359 (13) 1367-1380
  • 23 Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7 (3) 169-181
  • 24 Mok TS, Wu YL, Thongprasert S , et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361 (10) 947-957
  • 25 Rosell R, Carcereny E, Gervais R , et al; Spanish Lung Cancer Group in collaboration with Groupe Français de Pneumo-Cancérologie and Associazione Italiana Oncologia Toracica. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 2012; 13 (3) 239-246
  • 26 Zhou C, Wu YL, Chen G , et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 2011; 12 (8) 735-742
  • 27 Maemondo M, Inoue A, Kobayashi K , et al; North-East Japan Study Group. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362 (25) 2380-2388
  • 28 Mitsudomi T, Morita S, Yatabe Y , et al; West Japan Oncology Group. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010; 11 (2) 121-128
  • 29 Sequist LV, Yang JC, Yamamoto N , et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 2013; 31 (27) 3327-3334
  • 30 Wu YL, Zhou C, Hu C , et al. LUX-Lung 6: A randomized, open-label, phase III study of afatinab (A) versus gemcitabine/cisplatin (GC) as first-line treatment for Asian patients (pts) with EGFR mutation-positive (EGFR M+) advanced adenocarcinoma of the lung [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8016
  • 31 Fukuoka M, Wu YL, Thongprasert S , et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011; 29 (21) 2866-2874
  • 32 Mok T, Yang JJ, Lam KC. Treating patients with EGFR-sensitizing mutations: first line or second line—is there a difference?. J Clin Oncol 2013; 31 (8) 1081-1088
  • 33 Arcila ME, Oxnard GR, Nafa K , et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res 2011; 17 (5) 1169-1180
  • 34 Yu HA, Arcila ME, Rekhtman N , et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 2013; 19 (8) 2240-2247
  • 35 Miller VA, Hirsh V, Cadranel J , et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol 2012; 13 (5) 528-538
  • 36 Regales L, Gong Y, Shen R , et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 2009; 119 (10) 3000-3010
  • 37 Takezawa K, Pirazzoli V, Arcila ME , et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov 2012; 2 (10) 922-933
  • 38 Ohashi K, Sequist LV, Arcila ME , et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A 2012; 109 (31) E2127-E2133
  • 39 Sequist LV, Waltman BA, Dias-Santagata D , et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011; 3 (75) 75ra26
  • 40 Bean J, Brennan C, Shih JY , et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 2007; 104 (52) 20932-20937
  • 41 Engelman JA, Zejnullahu K, Mitsudomi T , et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316 (5827) 1039-1043
  • 42 Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8 (1) 11-23
  • 43 Soda M, Choi YL, Enomoto M , et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007; 448 (7153) 561-566
  • 44 Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol 2009; 27 (26) 4232-4235
  • 45 Chen Z, Sasaki T, Tan X , et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 2010; 70 (23) 9827-9836
  • 46 McDermott U, Iafrate AJ, Gray NS , et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer Res 2008; 68 (9) 3389-3395
  • 47 Soda M, Takada S, Takeuchi K , et al. A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A 2008; 105 (50) 19893-19897
  • 48 Shaw AT, Yeap BY, Mino-Kenudson M , et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009; 27 (26) 4247-4253
  • 49 Wong DW, Leung EL, So KK , et al; University of Hong Kong Lung Cancer Study Group. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 2009; 115 (8) 1723-1733
  • 50 Camidge DR, Bang YJ, Kwak EL , et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13 (10) 1011-1019
  • 51 Kim DW, Ahn MJ, Shi Y. Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer [abstract]. J Clin Oncol 2012 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 30(15): 7533
  • 52 Shaw AT, Yeap BY, Solomon BJ , et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 2011; 12 (11) 1004-1012
  • 53 Shaw AT, Kim DW, Nakagawa K , et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013; 368 (25) 2385-2394
  • 54 Choi YL, Soda M, Yamashita Y , et al; ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010; 363 (18) 1734-1739
  • 55 Katayama R, Khan TM, Benes C , et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A 2011; 108 (18) 7535-7540
  • 56 Lovly CM, Pao W. Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med 2012; 4 (120) ps2
  • 57 Doebele RC, Pilling AB, Aisner DL , et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012; 18 (5) 1472-1482
  • 58 Katayama R, Shaw AT, Khan TM , et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012; 4 (120) 20ra17
  • 59 Sasaki T, Koivunen J, Ogino A , et al. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 2011; 71 (18) 6051-6060
  • 60 Shaw AT, Mehra R, Kim DW , et al. Clinical activity of the ALK inhibitor LDK378 in advanced, ALK-positive NSCLC [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8010
  • 61 Nakagawa K, Kiura K, Nishio M , et al. A phase I/II study with a highly selective ALK inhibitor CH5424802 in ALK-positive non-small cell lung cancer (NSCLC) patients: Updated safety and efficacy results from AF-001JP [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8033
  • 62 Socinski MA, Goldman J, El-Hariry I , et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin Cancer Res 2013; 19 (11) 3068-3077
  • 63 Garon EB, Moran T, Barlesi F , et al. Phase II study of the HSP90 inhibitor AUY922 in patients with previously treated, advanced non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol 2012 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 30(15): 7543
  • 64 Sequist LV, Gettinger S, Senzer NN , et al. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer. J Clin Oncol 2010; 28 (33) 4953-4960
  • 65 Ou SH, Tan J, Yen Y, Soo RA. ROS1 as a 'druggable' receptor tyrosine kinase: lessons learned from inhibiting the ALK pathway. Expert Rev Anticancer Ther 2012; 12 (4) 447-456
  • 66 Shaw AT, Camidge DR, Engelman JA , et al. Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement [abstract]. J Clin Oncol 2012 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 30(15): 7508
  • 67 Birchmeier C, O'Neill K, Riggs M, Wigler M. Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc Natl Acad Sci U S A 1990; 87 (12) 4799-4803
  • 68 Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci U S A 1987; 84 (24) 9270-9274
  • 69 Charest A, Lane K, McMahon K , et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer 2003; 37 (1) 58-71
  • 70 Charest A, Wilker EW, McLaughlin ME , et al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res 2006; 66 (15) 7473-7481
  • 71 Chin LP, Soo RA, Soong R, Ou SH. Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J Thorac Oncol 2012; 7 (11) 1625-1630
  • 72 Takeuchi K, Soda M, Togashi Y , et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18 (3) 378-381
  • 73 Rimkunas VM, Crosby KE, Li D , et al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res 2012; 18 (16) 4449-4457
  • 74 Davies H, Bignell GR, Cox C , et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417 (6892) 949-954
  • 75 Tol J, Nagtegaal ID, Punt CJA. BRAF mutation in metastatic colorectal cancer. N Engl J Med 2009; 361 (1) 98-99
  • 76 De Roock W, Claes B, Bernasconi D , et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010; 11 (8) 753-762
  • 77 Paik PK, Arcila ME, Fara M , et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 2011; 29 (15) 2046-2051
  • 78 Bollag G, Tsai J, Zhang J , et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 2012; 11 (11) 873-886
  • 79 Gautschi O, Pauli C, Strobel K , et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J Thorac Oncol 2012; 7 (10) e23-e24
  • 80 Peters S, Michielin O, Zimmermann S. Dramatic response induced by vemurafenib in a BRAF V600E-mutated lung adenocarcinoma. J Clin Oncol 2013; 31 (20) e341-e344 [Epub ahead of print]
  • 81 Planchard D, Mazieres J, Riely GJ , et al. Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation-positive non-small cell lung cancer (NSCLC) patients. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8009
  • 82 Rudin CM, Hong K, Streit M. Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol 2013; 8 (5) e41-e42
  • 83 Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol 2011; 12 (2) 175-180
  • 84 Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12 (2) 89-103
  • 85 Sadiq AA, Salgia R. MET as a possible target for non-small-cell lung cancer. J Clin Oncol 2013; 31 (8) 1089-1096
  • 86 Ma PC, Jagadeeswaran R, Jagadeesh S , et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 2005; 65 (4) 1479-1488
  • 87 Beau-Faller M, Ruppert AM, Voegeli AC , et al. MET gene copy number in non-small cell lung cancer: molecular analysis in a targeted tyrosine kinase inhibitor naïve cohort. J Thorac Oncol 2008; 3 (4) 331-339
  • 88 Onitsuka T, Uramoto H, Ono K , et al. Comprehensive molecular analyses of lung adenocarcinoma with regard to the epidermal growth factor receptor, K-ras, MET, and hepatocyte growth factor status. J Thorac Oncol 2010; 5 (5) 591-596
  • 89 Onozato R, Kosaka T, Kuwano H, Sekido Y, Yatabe Y, Mitsudomi T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J Thorac Oncol 2009; 4 (1) 5-11
  • 90 Spigel DR, Ervin TJ, Ramlau R , et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC [abstract]. J Clin Oncol 2011 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 29(15): 7505
  • 91 Peters S, Adjei AA. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol 2012; 9 (6) 314-326
  • 92 Ou SH, Kwak EL, Siwak-Tapp C , et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 2011; 6 (5) 942-946
  • 93 Chi AS, Batchelor TT, Kwak EL , et al. Rapid radiographic and clinical improvement after treatment of a MET-amplified recurrent glioblastoma with a mesenchymal-epithelial transition inhibitor. J Clin Oncol 2012; 30 (3) e30-e33
  • 94 Eng C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999; 17 (1) 380-393
  • 95 Phay JE, Shah MH. Targeting RET receptor tyrosine kinase activation in cancer. Clin Cancer Res 2010; 16 (24) 5936-5941
  • 96 Blaugrund JE, Johns Jr MM, Eby YJ , et al. RET proto-oncogene mutations in inherited and sporadic medullary thyroid cancer. Hum Mol Genet 1994; 3 (10) 1895-1897
  • 97 Grieco M, Santoro M, Berlingieri MT , et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60 (4) 557-563
  • 98 Santoro M, Dathan NA, Berlingieri MT , et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RETproto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9 (2) 509-516
  • 99 Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 2011; 7 (10) 569-580
  • 100 Wells Jr SA, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res 2009; 15 (23) 7119-7123
  • 101 Jhiang SM. The RET proto-oncogene in human cancers. Oncogene 2000; 19 (49) 5590-5597
  • 102 Takeuchi K, Choi YL, Togashi Y , et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009; 15 (9) 3143-3149
  • 103 Kohno T, Ichikawa H, Totoki Y , et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med 2012; 18 (3) 375-377
  • 104 Wang R, Hu H, Pan Y , et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol 2012; 30 (35) 4352-4359
  • 105 Gautschi O, Zander T, Keller FA , et al. A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol 2013; 8 (5) e43-e44
  • 106 Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 2009; 27 (34) 5838-5847
  • 107 Stephens P, Hunter C, Bignell G , et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431 (7008) 525-526
  • 108 Gatzemeier U, Groth G, Butts C , et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol 2004; 15 (1) 19-27
  • 109 Arcila ME, Chaft JE, Nafa K , et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res 2012; 18 (18) 4910-4918
  • 110 Shigematsu H, Takahashi T, Nomura M , et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 2005; 65 (5) 1642-1646
  • 111 Tomizawa K, Suda K, Onozato R , et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer 2011; 74 (1) 139-144
  • 112 Mazières J, Peters S, Lepage B , et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 2013; 31 (16) 1997-2003
  • 113 Chaft JE, Arcila ME, Paik PK , et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther 2012; 11 (2) 485-491
  • 114 Bendell JC, Rodon J, Burris HA , et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 2012; 30 (3) 282-290
  • 115 Shapiro G, Kwak EL, Baselga J , et al. Phase I dose-escalation study of XL147, a PI3K inhibitor administered orally to patients with solid tumors [abstract]. J Clin Oncol 2009 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 27(15S): 3500
  • 116 Ding L, Getz G, Wheeler DA , et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008; 455 (7216) 1069-1075
  • 117 Malanga D, Scrima M, De Marco C , et al. Activating E17K mutation in the gene encoding the protein kinase AKT1 in a subset of squamous cell carcinoma of the lung. Cell Cycle 2008; 7 (5) 665-669
  • 118 Yap TA, Yan L, Patnaik A , et al. First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 2011; 29 (35) 4688-4695
  • 119 Marks JL, Gong Y, Chitale D , et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res 2008; 68 (14) 5524-5528
  • 120 Jänne PA, Shaw AT, Pereira JR , et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2013; 14 (1) 38-47
  • 121 Gandara D, Hiret S, Blumenschein GR , et al. Oral MEK1/MEK2 inhibitor trametinib (GSK1120212) in combination with docetaxel in KRAS-mutant and wild-type (WT) advanced non-small cell lung cancer (NSCLC): A phase I/Ib trial [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8028
  • 122 Becerra C, Infante JR, Garbo LE , et al. A five-arm, open-label, phase I/Ib study to access safety and tolerability of the oral MEK1/MEK2 inhibitor trametinib(GSK1120212) in combination with chemotherapy or erlotinib in patients with advanced solid tumors [abstract]. J Clin Oncol 2012 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 30(15): 3023
  • 123 Doebele RC, Vaishnavi A, Capelletti M , et al. NTRK1 gene fusions as a novel oncogene target in lung cancer [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8023
  • 124 Mo ML, Chen Z, Zhou HM , et al. Detection of E2A-PBX1 fusion transcripts in human non-small-cell lung cancer. J Exp Clin Cancer Res 2013; 32: 29
  • 125 Bicocca VT, Chang BH, Masouleh BK , et al. Crosstalk between ROR1 and the Pre-B cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell 2012; 22 (5) 656-667
  • 126 Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008; 9 (7) 517-531
  • 127 Nakano H, Yamamoto F, Neville C, Evans D, Mizuno T, Perucho M. Isolation of transforming sequences of two human lung carcinomas: structural and functional analysis of the activated c-K-ras oncogenes. Proc Natl Acad Sci U S A 1984; 81 (1) 71-75
  • 128 Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Della Porta G, Barbacid M. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 1984; 223 (4637) 661-664
  • 129 Riely GJ, Marks J, Pao W. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc 2009; 6 (2) 201-205
  • 130 Mascaux C, Iannino N, Martin B , et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 2005; 92 (1) 131-139
  • 131 Riely GJ, Kris MG, Rosenbaum D , et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res 2008; 14 (18) 5731-5734
  • 132 Ihle NT, Byers LA, Kim ES , et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst 2012; 104 (3) 228-239
  • 133 Villaruz LC, Socinski MA, Cunningham DE , et al. The prognostic and predictive value of KRAS oncogene substitutions in lung adenocarcinoma. Cancer 2013; 119 (12) 2268-2274
  • 134 Yu HA, Sima CS, Shen R , et al. Comparison of the characteristics and clinical course of 677 patients with metastatic lung cancers with mutations in KRAS codons 12 and 13 [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8025
  • 135 Jänne PA, Shaw AT, Pereira JR , et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2013; 14 (1) 38-47
  • 136 Sequist LV, von Pawel J, Garmey EG , et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 2011; 29 (24) 3307-3315
  • 137 Acquaviva J, Smith DL, Sang J , et al. Targeting KRAS-mutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol Cancer Ther 2012; 11 (12) 2633-2643
  • 138 De Raedt T, Walton Z, Yecies JL , et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 2011; 20 (3) 400-413
  • 139 O'Byrne KJ, Bondarenko I, Barrios C , et al. Molecular and clinical predictors of outcome for cetuximab in non-small cell lung cancer (NSCLC): Data from the FLEX study [abstract]. ASCO Meeting Abstracts 2009; J Clin Oncol 2009 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 27(15S): 8007
  • 140 Fennell DA, Goss GD, Socinski MA , et al. GALAXY-2 trial: A randomized phase III study of ganetespib in combination with docetaxel versus docetaxel alone in patients with advanced non-small cell lung adenocarcinoma [abstract]. J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): TPS8126
  • 141 Riely GJ, Brahmer JR, Planchard D , et al. A randomzied discontinuation phase II trial of ridaforolimus in non-small cell lung cancer (NSCLC) patients with KRAS mutations [abstract]. J Clin Oncol 2012 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 30(15): 7531
  • 142 Rekhtman N, Paik PK, Arcila ME , et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res 2012; 18 (4) 1167-1176
  • 143 Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489 (7417) 519-525
  • 144 Weiss J, Sos ML, Seidel D , et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med 2010; 2 (62) 62ra93
  • 145 Dutt A, Ramos AH, Hammerman PS , et al. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS ONE 2011; 6 (6) e20351
  • 146 Ratain MJ, Schwartz GK, Oza AM , et al. Brivanib (BMS-582664) in advanced solid tumors (AST): Results of a phase II randomized discontinuation trial (RDT) [abstract]. J Clin Oncol 2011 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 29(15): 3079
  • 147 Hammerman PS, Sos ML, Ramos AH , et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 2011; 1 (1) 78-89
  • 148 Shayesteh L, Lu Y, Kuo WL , et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21 (1) 99-102
  • 149 Samuels Y, Wang Z, Bardelli A , et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 2004; 304 (5670) 554
  • 150 Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22 (14) 2954-2963
  • 151 Lee JW, Soung YH, Kim SY , et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene 2005; 24 (8) 1477-1480
  • 152 Yamamoto H, Shigematsu H, Nomura M , et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res 2008; 68 (17) 6913-6921
  • 153 Kawano O, Sasaki H, Okuda K , et al. PIK3CA gene amplification in Japanese non-small cell lung cancer. Lung Cancer 2007; 58 (1) 159-160
  • 154 Paik PK, Moreira AL, Wang L , et al. Patterns of metastasis and survival in patients with PI3K pathway-driven stage IV squamous cell lung cancers (SQCLC). J Clin Oncol 2013 ASCO Annual Meeting Proceedings (Post-Meeting Edition); 31(15): 8022
  • 155 Spoerke JM, O'Brien C, Huw L , et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res 2012; 18 (24) 6771-6783
  • 156 Han JY, Park K, Kim SW , et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with adenocarcinoma of the lung. J Clin Oncol 2012; 30 (10) 1122-1128