Probable Correlation between Temporomandibular Dysfunction and Vertigo in the Elderly

Luciana Lozza de Moraes Marchiori1 Paula Vanessa Pedron Oltramari-Navarro1
Caroline Luiz Meneses-Barrivieira1 Juliana Jandre Melo1 Julya Macedo2
Juliana Ribeiro Zuculin Bruniera1 Vanessa Cristina Gorres1 Ricardo de Lima Navarro1

1 Universidade Norte do Paraná–Unopar, Londrina, PR, Brazil
2 Faculdade Global de Umuarama–Paraná, Umuarama, PR, Brazil

Abstract

Introduction Temporomandibular disorder (TMD) covers a variety of clinical problems, and some epidemiologic studies have tried to indicate mechanisms of interaction and association between vertigo and TMD, but this topic still is controversial.

Objective To assess the presence of vertigo in elderly patients associated with TMD.

Methods A cross-sectional study was conducted with the inclusion of elderly individuals who lived independently. TMD was assessed by dental evaluation and vertigo was verified by medical history. Statistical analysis was performed using the chi-square and relative risk.

Keywords ➔ dizziness ➔ aged ➔ temporomandibular joint dysfunction syndrome

Results There was a significant association ($p = 0.0256$) between the TMD and vertigo (odds ratio = 2.3793).

Conclusion These results highlighted the importance of identifying risk factors for vertigo that can be modified through specific interventions, which is essential to prevent future episodes, as well as managing the process of rehabilitation of elderly patients in general.

Introduction

Temporomandibular joint (TMJ) disorder covers a variety of clinical problems involving the masticatory muscles, the joint itself, and associated structures to the ear region. Temporomandibular disorder (TMD) is a general term for the clinical problems that involve the masticatory muscles, the TMJ, and associated structures.1–3

Vertigo is dizziness and may be associated with several comorbidities4 such as TMD. Some epidemiologic studies have tried to indicate mechanisms of interaction and association between vestibular and otologic symptoms and TMD, but this topic still is controversial.1–11

The otologic symptoms related to TMD most cited in the literature are tinnitus, ear pain, ear fullness, hearing loss, and vertigo.5–10 In the literature, there are some hypotheses regarding the relationship between otologic symptoms and TMD.3–14

Manni8 hypothesized that the neurologic signs and symptoms of TMD are correlated based on three theories: (1) the possibility of transmitting mechanical power from the TMJ to the middle ear through the discomalleolar ligament; (2) direct irritation of the mandibular condyle auriculotemporal nerve; (3) hypertonicity of the muscles and the tensor tympani velum, based on common trigeminal innervation of these muscles and masticatory muscles in the jaw. In addition, the poor positioning of the mandibular condyle could cause earache, tinnitus, and vertigo. Another hypothesis explains the occurrence of hyperactivity in the masticatory muscles, which can lead to contraction of the tensor tympani muscle and the tympanic membrane or muscular contraction of the
soft palate. This scenario can cause eustachian tube dysfunction leading to ear fullness, imbalance, and hearing loss.3,15

Vertigo is a kind of roundabout dizziness, a loss of body balance, observed in many diseases. This condition mainly affects the elderly, and etiologic factors should be investigated to increase the efficiency of treatment.4,7,10 Thus, this study aimed to investigate the association between vertigo and TMD in elderly patients.

Materials and Methods

The study sample consisted of 199 physically independent elderly (mean age: 69.23 ± 5.70 years) subjects of both sexes (127 women and 73 men), from a population of 43,610 elderly subjects enrolled in 38 Basic Health Units in the urban area of Londrina. Individuals were randomly selected, taking into account gender and the five regions of the county, as follows: 15% of the central region, 27% in the northern region, 23% in the southern region, 19% of eastern region and 16% in the western region. This study is part of EELO Project, developed by the Universidade Norte do Paraná - UNOPAR, of the ethics committee number 00135/12.

The EELO is a multidisciplinary project aimed at integrating a wide variety of topics and health assessments, including economic and psychosocial problems, that enable a comprehensive understanding of the aging process. The data were only collected after the volunteers were informed the objectives of the study and signed the informed consent for any clinical procedure.

Only elderly subjects with natural teeth or prostheses with a functional occlusion were included. Individuals who were toothless and not duly rehabilitated by prostheses were excluded from the study. In addition, patients should have participated in the anamnesis of the audiological evaluation. Only experienced examiners performed all reviews of this research.

The diagnostic evaluation of vertigo consisted for audiological anamnesis based on the Katz protocol used in routine audiology care.16

The evaluation of the presence of painful symptoms in the TMJ started with an explanation to the patients on the difference between pressure and discomfort, to obtain reliable answers. This test was performed with bilateral palpation, with the index fingers placed 10 to 20 mm ahead of the external auditory canal. The lateral aspect of the TMJ was palpated with the patient’s mouth closed, and the posterior aspect was palpated with the patient’s mouth opened. These regions were pressed continuously and delicately, with a force of ~450 to 900 g. According to Austin and Pertes,17 For muscular palpation, patients received the same orientations regarding the difference between pain and discomfort. The palpation of the masticatory muscles involved the anterior, medial, and posterior temporal and origin, body, and insertion of superficial and deep masseter, which were bilaterally palpated, with a constant pressure of 1,500 g.18 The presence of pain was checked through the eyelid reflex and/or by questioning patients. Cervical muscles (posterior digastric muscle, sternocleidomastoid, and superior trapezius) were palpated by clipping one’s fingers like pincers on both sides.

The presence of joint noises based on right and left TMJ inspection was also evaluated. This evaluation was performed by placing the pointer fingers lightly upon the region corresponding to the lateral pole of the condyle, facing the external acoustic meatus, while the patient performed mandibular movements of opening and closing.

Statistical analysis was performed by chi-square tests and odds ratios to determine possible correlations between dizziness and TMD. In the univariate analyses, p < 0.01 was considered p < 0.001 highly significant; and p < 0.05 was used for the inclusion in the final model for the chi-square test and the relative risk value, with 95% confidence.

Results

This study showed that there is a significant association between TMD and vertigo. Moreover, the studied elderly people with TMD showed 17.61% more chance of presenting vertigo than those without TMD (\textbullet Table 1). However, there was no significant association between TMD and vertigo when the genders were observed separately (\textbullet Table 2 and \textbullet Table 3).

By multiple logistic regression, using the factor “vertigo” as intercept and TMD and gender as independent variables, it was observed that the TMD is a predictor for vertigo but not gender. The result of this regression can be seen in \textbullet Table 4.

<table>
<thead>
<tr>
<th>TMD</th>
<th>Vertigo complaint</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>54</td>
<td>87</td>
</tr>
<tr>
<td>No</td>
<td>12</td>
<td>46</td>
</tr>
</tbody>
</table>

Abbreviation: Absolute risk reduction, ARR; TMD, temporomandibular disorder.
Note: Odds ratio = 2.3793; 95% confidence interval 1.1577–4.8900; χ² correlation = 5.748 (p = 0.0256). Number needed to cause one adverse event in time = \(7\); ARR = 17.61%.
Discussion

Pathology of the TMJ affects an important part of the population, though it is not viewed as a public health problem. Between 3 and 7% of the population seeks treatment for pain and dysfunction of the temporomandibular joint (TMJ) or related structures. The literature reports great variability in the prevalence of the clinical symptoms (6 to 93%) and signs (0 to 93%), probably as a result of the different clinical criteria used. Age is a risk factor, though with some particularities. In elderly patients, there is an increased prevalence of clinical and radiologic signs, though also a lesser prevalence of symptoms and of treatment demands than in younger adults. Approximately 7% of the population between 12 and 18 years of age is diagnosed with mandibular pain/dysfunction.19

The association of vertigo with TMD has been debated for many years. The observation that patients with TMD have otologic symptoms is confounded because vertigo is a common symptom in the normal population. The mechanism of the association of TMD and otologic symptoms is unknown.5 From literature studies, it appears that several distinct mechanisms and comorbidities may be present in the pathophysiology of otologic symptoms, and more specifically, especially of vertigo in relation to TMD, causing its interaction.18,20–27

According to D’Antonio et al.20 symptoms commonly associated with TMD are headache, tinnitus, ear pain, TMJ noise perception and balance disorders, and problems of malocclusion and painful palpation of temporomandibular structures. In some movements, the mandibular condyles exert pressure on the auriculotemporal nerve near the TMJ capsule, working as a trigger to the painful process along the temporal region. Williamson21 hypothesized that vertigo can result from painful stimuli caused by harmless peridiscal TMJ tissue, which produces arterial constriction in the temporal region and decreases the blood supply to the inner ear vestibular

Table 2 Complete distribution of female patients with TMD and vertigo

<table>
<thead>
<tr>
<th>TMD</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Yes</td>
<td>45</td>
<td>53</td>
<td>98</td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>74</td>
<td>126</td>
</tr>
</tbody>
</table>

Abbreviation: Absolute risk reduction, ARR; TMD, temporomandibular disorder.
Note: Odds ratio = 2.5472; 95% confidence interval 0.9918–6.5415; χ² correlation = 3.932 (p = 0.0775). Number needed to cause one adverse event in time= 5; Absolute risk reduction, ARR = 20.92%.

Table 3 Complete distribution of male patients with TMD and vertigo

<table>
<thead>
<tr>
<th>TMD</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>Yes</td>
<td>5</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>59</td>
<td>73</td>
</tr>
</tbody>
</table>

Abbreviation: Absolute risk reduction, ARR; TMD, temporomandibular disorder.
Note: Odds ratio = 1.3235; 95% confidence interval 0.3950–4.4342; χ² correlation = 0.207 (p = 0.8783). Number needed to cause one adverse event in time = 24; Absolute risk reduction, ARR = 4.26%.

Table 4 Multiple logistic regression between vertigo, TMD, and gender

<table>
<thead>
<tr>
<th>Multiple logistic regression</th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept: Vertigo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMD</td>
<td>2.3950</td>
<td>1.16–4.93</td>
<td>0.0178</td>
</tr>
<tr>
<td>Gender</td>
<td>1.3954</td>
<td>0.74–2.63</td>
<td>0.3024</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; TMD, temporomandibular disorder.
compared with the control subjects without TMD signs or in the TMD groups had high incidences of vertigo complaints. Statistically, the control group had fewer vertigo complaints. Patients (14%) was found to be lower for the control group. Statistically significant association between TMD and vertigo in the studied population demonstrated the importance of identifying risk factors for vertigo that can be modified through specific interventions.

Conclusion

This research demonstrated a significant association between TMD and vertigo. However, there was no significant association between TMD and vertigo when the genders were observed separately. This significant association in the studied population demonstrated the importance of identifying risk factors for vertigo that can be modified through specific interventions.

References

16 Katz J. Handbook of Clinical Audiology. São Paulo, Brasil: Manole; 1989
22 Marchiori LLM, Melo JJ, Possette FLF, Correa AL. Comparação da frequência de queixa de vertigem no idoso com e sem hipertensão arterial. Int Arch Otorhinolaryngol 2010;14(4):456–460