In vivo appearances of gallbladder carcinoma under magnifying endoscopy and probe-based confocal laser endomicroscopy after endosono-graphic gallbladder drainage

An 87-year-old man with multiple medical co-morbidities was admitted for right upper quadrant pain and fever. Computed tomography showed a distended gallbladder with gallstones and pericholecystic fluid compatible with a diagnosis of acute cholecystitis. There was no gallbladder mass. Since the patient had sepsis and was unfit for surgery, endoscopic ultrasound (EUS) drainage of the gallbladder was performed with a lumen-apposing stent (10 × 15 mm, AXIOS; Xlumena, Mountain View, California, USA) as an alternative to percutaneous cholecystostomy (● Fig. 1 a, b). The patient had an uneventful recovery.

Follow-up cholecystoscopy performed 3 months later showed clearance of all stones. However, a 2-cm polypoid lesion was noted at the fundus of the gallbladder. Magnifying narrow band imaging (NBI) showed enlarged and irregular mucosal glands with dilated and cork-screw-appearance microvasculature that was suspicious for malignancy (● Fig. 2). Probe-based confocal laser endomicroscopy (CLE) (GastroFlex; Mauna Kea Technologies, France) showed darkened and irregular columnar cells with loss of villous architecture (● Fig. 3 a, b). Miniprobe EUS examination (UM-DP12–25R; Olympus, Tokyo, Japan) showed suspicion of tumor involvement of the gallbladder muscularis propria (● Fig. 4). Final histological findings confirmed the presence of a gallbladder adenocarcinoma (● Fig. 5). The patient was then treated conservatively as he was too frail to undergo any major surgery.

To our knowledge, this is the first description of a gallbladder adenocarcinoma discovered endoscopically. This was made possible through the use of endosono-graphic drainage that allowed endoscopic assessment of the gallbladder [1, 2]. Magnifying NBI endoscopy has revolutionized the diagnosis of early gastrointestinal neoplasms and is pivotal to performance of endoscopic mucosal resection or submucosal dissection [3]. CLE allows in vivo assessment of cellular architecture and has been shown to be associated with high sensitivity and specificity for diagnosis of Barrett’s metaplasia and biliary malignancy [4]. EUS-guided gallbladder drainage in this patient opened the way for application of the above instruments in aiding diagnosis that was not suspected on CT.

Endoscopy_UCTN_Code_CCL_1AZ_2AC

Competing interests: None
Anthony Y. B. Teoh¹, Anthony W. H. Chan², Philip W. Y. Chiu¹, James Y. W. Lau¹

¹ Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
² Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0033-1359139
Endoscopy 2014; 46: E13 – E14
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Anthony Y. B. Teoh, MD
Department of Surgery, Prince of Wales Hospital
The Chinese University of Hong Kong
Shatin, Hong Kong
Fax: +852-2637-7974
anthonyteoh@surgery.cuhk.edu.hk

Fig. 3 a Confocal laser endomicroscopy (CLE) image of the normal-looking gallbladder mucosa, showing villous architecture with columnar epithelium. b CLE image of the gallbladder adenocarcinoma, displaying marked darkened, variably sized glands.

Fig. 4 Miniprobe examination with endoscopic ultrasound (EUS) showed tumor involvement of the muscularis propria of the gallbladder.

Fig. 5 A complex cribriform malignant gland is present in the stroma supporting the diagnosis of adenocarcinoma (hematoxylin and eosin [H&E], original magnification ×400).