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Abstract

v

The present review attempts to build up a com-
prehensive picture of the major primary tech-
niques used to screen and assess the cytotoxicity
of plant complex mixtures. These can be based on
metabolic activity, on membrane integrity, on
morphological features, on cell growth; the type
of cell death can also be established from more
or less specific events (e.g., apoptosis, autophagy,
DNA damage detection, reactive oxygen species
involvement). This review will discuss the bene-
fits, the difficulties, and the challenges that may
occur along cytotoxicity testing of raw extracts
and isolated natural compounds.

Abbreviations

v

7-AAD:  7-aminoactinomycin D

AIF: apoptosis inducing factor

ATG6: autophagy-related gene 6

AO: acridine orange

BH3: Bcl2 homology domain 3

BrdU: bromodeoxyuridine

DAPI: 4' 6-diamidino-2-phenylindole

DSB: double strand break

DTNB: 5,5'-dithiobis-(2-nitrobenzoic) acid

FISH: fluorescence in situ hybridization

GFP: green fluorescent protein

GSH: glutathione

GSSG: glutathione disulfide

YH2AX:  serine139-phosphorylated histone
H2AX

H,DCFDA: 2',7'-dichlorodihydrofluorescein
diacetate

HMGB-1: high-mobility group protein 1

INT: 2-(4-lodophenyl)-3-(4-nitrophenyl)-

5-phenyl-2H-tetrazolium

Planta Med 2014; 80: 1210-1226

LDH:
MDA:
MMP:

MPTP:

MTS:

MTT:

OECD:

PARP:
PI:
PI3K:
PS:
PMS:
QSAR:

RNS:
ROS:
TBA:

TBARS:

TdT:
TNB:
TNEF:

TUNEL:

UDS:

WST-1:

XTT:

A

lactate dehydrogenase
malondialdehyde

mitochondrial membrane
permeability

membrane permeability transition
pore
3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium
3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide
organization for economic and
co-operation development
poly-ADP-ribose polymerase
propidium iodide
phosphatidylinositide 3-kinase
phosphatidylserine

phenazine methosulfate

quantitative structure-activity
relationship models

reactive nitrogen species

reactive oxygen species
thiobarbituric acid

thiobarbituric acid reactive
substances

terminal deoxynucleotidyl transferase
5-thio-2-nitrobenzoic acid

tumor necrosis factor

terminal deoxynucleotidyl transferase
dUTP nick end labeling

unscheduled DNA synthesis

water soluble tetrazolium salt
sodium (2,3-bis-(2-methoxy-4-nitro-
5-sulfophenyl)-2H-tetrazolium-5-car-
boxanilide)

mitochondrial transmembrane
potential
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Introduction

v

In vitro methods have become a cornerstone of drug discovery
and are widely applied to the study of natural products, raw ex-
tracts, and isolated compounds, both for screening and mecha-
nistic studies. Most products isolated so far have been tested on
only a few of the myriad of cell and tissue models available and
so, the field for research and discovery remains considerable.
Whether researching cytotoxic, deleterious (toxic), or protective
effects, the determination of concentrations that are cytotoxic to
the model should be the primary step of in vitro testing.
Depending on the research scopes and on the further aims that
are expected to be met, cytotoxicity may or may not be an end-
point on its own.

For instance, in studies trying to decipher the pharmacological
activity of herbs that are traditionally used (i.e., for which no or
low toxic effects are expected), toxicity towards in vitro cell cul-
tures should be limited, notably in using proper doses or incuba-
tion times.

On the contrary, in works screening for potential anticancer com-
pounds, cytotoxicity should be sought at the lowest possible con-
centration.

Plants have a long history of use for cancer treatment, although
the efficacy of such traditional treatments should be cautiously
evaluated. Indeed, cancer, a very specific and complex disease,
seems to be poorly defined in the terms of folklore and tradition-
al medicine [1] and certainly requires modern treatment modal-
ities, based on surgery and radio- and/or chemotherapy.
Although cytotoxicity is neither necessary nor sufficient for anti-
cancer activity, it is an activity consistent with antitumor activity
as it is sensitive to every mechanism required for cell survival or
cell death. The results of cytotoxicity screening, thus, could help
to decide which materials are to be subjected to a fractionation/
purification process [2]. In that way, the phytochemical investiga-
tion of medicinal plants used for cancer treatment has undeni-
ably resulted in the development of many important anticancer
drugs, including paclitaxel, vinblastine, vincristine, rohitukine,
etoposide, teniposide, or podophyllotoxin [3].

The present review attempts to build up a comprehensive picture
of the major primary techniques used to screen and assess the cy-
totoxicity of herbal complex mixtures. These can be based on
metabolic activity, on membrane integrity, on morphological fea-
tures, on cell growth; the type of cell death can also be specified
from more or less specific events (such as apoptosis, autophagy,
DNA damage detection, reactive oxygen species involvement).
The review will discuss the benefits, the difficulties, and the chal-
lenges that may occur along cytotoxicity testing of raw extracts
and isolated compounds.

Preliminary Considerations for Toxicity Screening of
Natural Products

v

Search for deleterious or protective activities

For this type of research, the selection of concentrations to be
tested in vitro represents a considerable challenge that is how-
ever frequently overlooked: (i) concentrations should reflect in
vivo concentrations at the level of target organs, but these are
most often unknown; (ii) concentrations depend on selected ex-
posure times; (iii) stability in test conditions is often unknown;
(iv) testing multiple concentrations may require considerable
time and cost; and (v) researchers eager to measure an effect
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may be tempted to use unreasonably high concentrations. Plasma
or serum concentrations and pharmacokinetics of similar struc-
ture compounds may give a clue. These data are however fre-
quently not available or may have been obtained on a surrogate
animal species, sometimes at high dosages intended for a toxico-
logical study. Such data may indeed entail particular metabo-
lisms and toxicokinetics, irrelevant to physiological conditions
in humans. For natural products, the situation may be less diffi-
cult as traditional use should be a guide to educated guesses [4].

Basic requirements for (cyto)toxicity testing of

herbal products and raw extracts

Before undertaking any tests on raw extracts, the complexity of
herbal material should be considered, including basic questions
such as defining the most appropriate herb naming system (bo-
tanical, common, pharmaceutical name or herbal drug name),
determining the botanical identity of the test material, selecting
the relevant part of the herb for testing, considering confounding
factors such as geographical origin, natural growing environ-
ment, genotype, harvesting time (year, season, time of day) and
conditions, storage, processing and extraction [5,6].

The characteristics and composition of test material should be
evaluated, e.g., by spectroscopy and preliminary phytochemical
screening. Indeed, many tests are based on absorbance, fluores-
cence, or luminescence measurements and so the UV-visible
characteristics of tested extracts and compounds should be con-
sidered. Tests measuring interactions with proteins or receptors
may be biased by the chemical reactivity of tested compounds (e.
g., aldehydes), by precipitating agents (e.g., polyphenols), by de-
naturing agents (e.g., saponins) or even by contaminating bacte-
rial lipopolysaccharides [7]. An indication of the spectroscopic
properties and composition allows foreseeing relevant controls.

Dissolution of tested extracts and compounds

Both in primary toxicological evaluation and cellular pathway
highlighting, a co-solvent is often added to the culture medium
for helping in dissolution of tested extracts and compounds;
DMSO has imposed itself as a valuable vehicle. However the ab-
sence of a complete understanding of the effects of DMSO can
preclude the reaching of accurate conclusions due to its numer-
ous artifacts [8]. DMSO is notably a hydrogen-bound disrupter, a
cell-differentiating agent, a hydroxyl radical scavenger, an inter-
cellular electrical uncoupler, and an intracellular low-density
lipoprotein-derived cholesterol mobilizing agent [8].

At usual working concentrations (up to 0.5%; =70 mM), DMSO
may notably induce effects on cell cycle [9], on protein phospho-
rylation [10], on expression of genes coding for drug metaboliz-
ing enzymes such as CYP [11]. However, a permeation of cyto-
plasmic membrane, assessed by LDH release of Caco-2 cells, only
appears for DMSO concentration higher than 10% [12].

Thus, effects of co-solvent applied to the system should be eval-
uated via suitable control conditions.

For any testing, the solubility of tested extracts or compounds
should be assessed at the beginning and the end of the treatment,
as solubility can change during the course of exposure in the test
system [13]; a rapid microscopy observation allows eliminating
such artifacts. For example, biased data were suspected for the
flavonoid diosmin that was found to slowly recrystallize in cul-
ture medium, yielding microscopic crystals over 48 h incubation
[14].
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Table 1 Cell death: morphological and biochemical characteristics.

Cell death Morphological features Biochemical features References
mode
Necrosis » Cellular swelling > Activation of caspase proteases [15,17,19-22]
» Organelle swelling > Lower ATP level
» Moderate chromatin condensation > ROS overgeneration
» Plasma membrane rupture » Hyperactivation of PARP1
> Leakage of proteases and lysosomes > HMGB- 1 release
> Activation of TNFR
> RIP1 phosphorylation
» RIP ubiquitination
Apoptosis » Cellular and nuclear compaction > Activation of caspases [16,19,22-25]
> Loss of mitochondria membrane potential > Activation or inhibition of Bcl-2 family proteins (e.g., Bax, Bak
> Plasma membrane blebbing Bid, BH3)
> Nuclear fragmentation > AW, disruption
> PS exposure
» ROS overgeneration
Autophagy » Lack of chromatin condensation » Beclin-1 dissociation from Bcl-2/XL [19,20,26]
» Accumulation of autophagic vacuoles » Dependency on ATG gene products
» LC3-Ito LC3-Il conversion P62Lck degradation
Paraptosis » Extensive cytoplasmic vacuolization > Expression of ILGFR (insulin-like growth factor receptor) [27-30]
» Mitochondria swelling » Independency of caspase inhibitors and Bcl-2 proteins
» Without morphological change of apoptosis > Activation of mitogen-activated protein kinase family
Pyroptosis > Cellular swelling » Caspase-1 activation [15,16,31]
> Loss of plasma membrane integrity » Caspase-7 activation
> Release of cytoplasmic content > Secretion of IL-18and IL-18

The Forms of Cell Death

v

Cell death, as one of the phenomena of the cell life cycle, often
corresponds to a genetic reprogramming of the cell that leads to
a cascade of changes in biochemistry and morphology. Cytotoxic
agents may disrupt the cell membrane, perturb cellular functions
or activate one of the programmed cascades, e.g., via kinase inhi-
bition or “cell death” receptors binding. Depending on the con-
sidered definition of “life”, several attempts have initially been
made to classify cell death subroutines based on morphological
characteristics. The concepts of “necrosis”, “apoptosis”, and “au-
tophagy” have then been evolved to determine cell death modal-
ities, yielding a number of cytotoxic assays, generally based on
the determination of total cell death occurring in a population of
tumor cells. Looking deeper into the molecular pathways that
regulate and execute cell death program, many biochemical as-
says and cytotoxicity end-points have been developed to monitor
cell death-related phenomena and further classify the different
forms of death [15-18]. Some of these techniques, discussed in
the present review, have become major tools for the screening
and cytotoxicity assessment of raw herbal extracts and pure iso-
lated compounds, but also for bioguided fractionations.

The major cell death mechanisms, defined from morphological
and biochemical criteria, are summarized in © Table 1.

Necrosis is morphologically defined by a gain in cell volume (on-
cosis), swelling of organelles, plasma membrane rupture and
subsequent loss of intracellular contents. Cells, in response to
acute hypoxic or ischemic injury, such as myocardial infarction
or stroke, or to supraphysiological conditions, e.g., mechanical
force, heat, cold, or permeabilizing agents, usually undergo ne-
crosis [19-21]. Necrosis can occur in a manner regulated by sig-
nal transduction pathways and catabolic mechanism, a cell death
sometimes called “necroptosis” that has a prominent role in mul-
tiple physiological and pathological settings [15,21]. Several me-
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diators can be involved, including ROS, calcium ions, the kinase
RIP1, PARP, which can deplete cellular ATP, HMGB-1, TNF, and
calcium-activated non-caspase proteases (e.g., calpains and ca-
thepsins) [15,17,21,22]. Necrosis allows entrance of the DNA-
binding PI, yielding characteristic fluorescent cellular bodies [20].
Apoptosis is morphologically characterized by rounding-up of
the cell, reduction of cellular volume, chromatin condensation,
and nuclear fragmentation. During the early process of apoptosis,
cells become smaller due to condensation of cytoplasm and
shrinking of organelles. The following step consists in a very char-
acteristic chromatin condensation (pyknosis), a nuclear fragmen-
tation (karyorrhexis), and plasma blebbing which are maintained
until the end of the apoptotic process [16,19,23]. Apoptosis can
be induced via cell “death receptors” or Bcl 2-regulated mito-
chondria pathways. Once a member of the TNF family or a death
ligand binds to cell-surface death receptors, caspases 8 and 3 will
be activated, and cells will be triggered to apoptosis. Another way
is to activate proteins of the proapoptotic Bcl-2 family (Bax, Bak,
Bid), leading to increased MMP, cytochrome c release, and trig-
gering of caspase 9, leading cells to apoptosis. The lack of antiap-
optotic protein BH3 also causes loss of mitochondria membrane
potential, which leads cells to apoptosis [19,24]. The externaliza-
tion of PS in apoptotic cells but not in necrotic cells is considered
as a marker of apoptosis. Other proteins, including annexin I and
calreticulin, can also be exposed on the cell surface during apo-
ptotic cell clearance [22]. Apoptosis is characterized by a lag peri-
od between PS and PI positivity, while in necrosis both events co-
incide. The extensive generation of ROS has been found in both
apoptotic and necrotic pathways [19,25].

Autophagy is a self-digesting mechanism in which the cellular
contents are engulfed by a double membrane known as an auto-
phagosome and delivered to lysosomes for degradation. Sus-
tained autophagy activation leads to a high turnover rate of pro-
teins and organelles that overcomes the cell capacities and leads
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to death via an apoptotic pathway; whether autophagy in dying
cells is the cause of death or an attempt to prevent it remains a
matter of debates. The morphological characteristics of macroau-
tophagy include vacuolization, degradation of cytoplasm con-
tents, and slight condensation of chromatin. Autophagy is trig-
gered by the formation of a complex set of autophagic-related
proteins such as PI3Ks and the product of ATG6 (also known as
beclin-1). Other ATGs are also involved in the regulation of au-
tophagy. The lipidation of microtubule-associated protein, LC3-I
to LC3-I], can also trigger autophagy [19,20,26].

Other forms of cell death have been described: often apoptotic
and/or necrotic features have been detected, and end-point tech-
niques to distinguish some of these mechanisms are still heavily
debated. These forms include: (i) paraptosis that presents a ne-
crotic-like morphology; paraptosis does not fulfill the criteria
for apoptosis but is considered to be a programmed cell death as
it can be stopped by inhibitors of protein synthesis and transcrip-
tion [27-30]; (ii) pyroptosis, first identified in macrophages trig-
gered by bacteria, is now recognized a more general cell death
subroutine that is neither a macrophage-specific process nor on-
ly a result from bacterial infection [5]; morphological features of
pyroptosis are typical of necrosis, but the most distinctive bio-
chemical feature is an induced proximity-mediated activation of
caspase-1, leading to an unusual caspase-1 — caspase-7 cascade
[15,16,31]; (iii) mitotic catastrophe, cell death occurring during
mitosis, considered an oncosuppressive mechanism rather than
a cell death executioner mechanism; (iv) anoikis, an adherent
cell-restricted lethal cascade that is ignited by detachment from
the matrix; (v) entosis, an homotypic cell-to cell “cannibalism”
provoked by the loss of extracellular matrix interaction; (vi) par-
thanatos, a caspase-independent regulated necrosis-type path-
way depending on early PARP1 activation with NAD* and ATP de-
pletion paralleled by AIF-mediated chromatinolysis; (vii) netosis,
a death phenomenon restricted to granulocytic cells and depen-
dent on components of the autophagic machinery; and (viii) cor-
nification, a cell death subroutine restricted to keratinocytes and
functionally linked to the generation of the stratum corneum of
the epidermis [15].

Assays of Cell Viability Based on Metabolic Activity
Measurements

v

Tetrazolium-based assays

Tetrazolium-based assays are probably the most widely used
tests to determine cellular viability. Tetrazolium salts act as redox
sensors that can be reduced by metabolically active cells into
formazan derivatives, which can in turn be dissolved for spectro-
photometrical assessment.

Principle: In 1963, Slater et al. reported for the first time that tet-
razolium salts were reduced by the mitochondrial respiratory
chain [32]. In 1983, Mosmann came up with the idea that this
property could be used to measure cellular proliferation and sur-
vival, and developed the MTT assay [33]. Since the 60s, assump-
tion has been made that the MTT ring cleavage was ensured by
complex II of the respiratory chain which is composed of succi-
nate dehydrogenase. Later studies however demonstrated that
most of the MTT reduction occurred at extramitochondrial sites,
involving pyridine nucleotides NADH and NADPH [34].

Besides MTT, several other dyes such as XTT, MTS, or WST-1 may
be used. These present the advantage of carrying a negative
charge that allows them to remain soluble after reduction, avoid-
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ing the formazan solubilization step [35]. XTT and MTS are how-
ever less sensitive to metabolic reduction than MTT. The addition
of PMS as an intermediate electron acceptor can solve the prob-
lem and restore reliable sensitivity [36]; the complex XTT/PMS is
reported less stable than MTS/PMS and the latter seems prefera-
ble [37].

Potential pitfalls: Herbal extracts being complex mixtures, many
compounds may be suspected of interacting with tetrazolium-
based assays. Of these, antioxidants may possess a reduction po-
tential sufficient to react with tetrazolium salts, resulting in sur-
vival overestimation [38]. This was notably demonstrated for as-
corbic acid, tocopherol [39], and polyphenols such as flavonoids
or tannins [40,41]; the MTT assay has even been validated to
quantify the antioxidant potential of herbal extracts [42].

In cell-based systems, it appears mandatory to carefully wash the
cells to remove the maximum of potentially interfering phyto-
chemicals before adding the tetrazolium dye. Brugisser et al. have
shown that the flavonoid kaempferol could directly reduce MTT;
its effects were limited when the incubation medium was dis-
carded and cell cultures washed properly [39]. But washing oper-
ations obviously will not be efficient for strongly adsorbed or in-
ternalized compounds.

Tetrazolium tests may also be influenced by modulations in
mitochondria amounts and activities. For example, the flavonoid
genistein induces a G2/M cell cycle arrest followed by cell death
in tumor cells. As a consequence, the higher volume of G2/M-
blocked cells harbors higher amounts of mitochondria and thus
higher reductive capacities. MTT assay underestimated the
growth inhibitory potential, as compared to direct cell count [43].
Similarly, substances interfering with the content in NAD(P)H can
lead to mistaken survival estimations. The pro-oxidant tert-bu-
tylhydroquinone enhanced cellular viability with XTT assay as
compared to crystal violet assay [44], which was shown to be a
consequence of an increased amount in NADPH-generating en-
zymes such as glucose-6-phosphate dehydrogenase.

Resazurin (alamar blue) assay

Principle: Although resazurin is commonly presented as a redox
indicator, the principle of the assay is the same as that of tetrazo-
lium-based assays. Resazurin is reduced into resorufin, which
may then be assessed by spectrophotometry or fluorometry. Re-
sazurin is often presented as having higher sensitivity towards
metabolic activity, and is able to assess as low as 200 cells/well
[45].

Potential pitfalls: As for tetrazolium-based assays, washing steps
prior to viability assessment seem mandatory, not only because
antioxidants may directly reduce resazurin, but also because test
compounds may exhibit fluorescence by themselves. The prob-
lem however seems limited: a profiling study revealed that,
although up to 2-5% of library compounds fluoresced in the blue
spectral region (coumarin-like fluorescence: Aex =350 nm; Aem
=440 nm), only 0.004-0.01% were fluorescent with excitation at
~ 560 nm and detection at = 585 nm (resorufin-like fluorescence)
[46].

Resazurin, being non-toxic to cells, has also been used in time-
course determinations of survival/proliferation [47,48]. How-
ever, in interfering with cellular redox potential (e.g., via NAD(P)
H reaction), resazurin can trigger a burst of ROS production, re-
sulting in mitochondrial respiration impairment with decreased
proliferation rates; this was shown for HL-60 and Jurkat leukemia
cells [49]. Moreover, working with medium supplemented in
proteins (serum or bovine albumin) impacts on the absorbance

Bunel Vet al. Methods Applied to... Planta Med 2014; 80: 1210-1226

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



IPAL:E Reviews

and fluorescence properties of resorufin [50]. The effect of resa-
zurin on the considered cell type and the effect of proteins on
measured signals should then be carefully considered for such
time-course evaluations. Moreover, in end-point experiments,
the use of protein-free media should always be recommended
for the survival estimation step.

Neutral red assay

Neutral red (3-amino-m-dimethylamino-2-methyl-phenazine) is
incorporated by living cells only, where it accumulates in lyso-
somes [51]. After cellular lysis, it can be assessed spectrophoto-
metrically, showing linear correlation with living cells number
[52].

At physiological pH, the dye’s charge is null, allowing it to pene-
trate cell membranes by passive diffusion. While reaching the ly-
sosomes where pH drops down, the dye acquires a cationic
charge and remains trapped. The use of media buffered at physi-
ological pH, such as those suitable for cell culture, usually pre-
vents modification in the pH gradient that can affect cellular se-
questration of the dye. However, using higher concentrations or
longer incubation times, as well as decreasing temperature or
pH, may lead to precipitation of neutral red which can directly
affect cellular viability [53]. Moreover, interesting morphological
assessments, such as the vacuolization occurring in cell death,
can be performed under a phase contrast microscope [51].

ATP content assay

Principle: The level of ATP, an energy transporter present in meta-
bolically active cells, can be assessed via a bioluminescence reac-
tion based on the oxidation of luciferin by luciferase; ATP being
cofactor for the enzyme, light is emitted proportionally to its con-
centration [54] and presumably to the number of cells [55,56].
Cellular ATP is measured by direct lysis of the cells with a suitable
detergent. Because of its high sensitivity - the assay is capable of
measuring as low as 10 cells per well [57] - and its ability to mea-
sure cellular proliferation, the assay tends to replace the 3H-thy-
midine uptake assay [55]. The ATP amount present in each cell
depends on its generation and degradation balance: ATP quantity
drops soon after cell death, when production stops and ATPases
still consume the remaining stock. Accordingly, this results in a
loss of luminescence which generally correlates with other redox
sensitive assays [57]. However, a study using lung cancer cells re-
ported discrepancies between MTT and ATP assays when mea-
suring the growth inhibition potential of chemotherapeutic
drugs [58].

Potential pitfalls: Luciferase has been originally isolated from the
firefly Photinus pyralis. Nowadays, a variety of other related en-
zymes are commonly used but all have been associated with arti-
facts [59], mainly with luciferase inhibitors; this has notably been
demonstrated for resveratrol [60] and several other compounds
ranging from fatty acids to luciferin-like products [61]. A profil-
ing study of a library of 70000 compounds identified at least 3%
of them able to inhibit luciferase; but it seems this proportion
was underestimated because of the inability of the test to detect
weak inhibitors [46]. Test compounds may also quench the low-
level light emitted by bioluminescence. Thus, as discussed earlier,
proper washing steps of cell cultures should follow incubation to
remove eventual interfering substances.

Other interfering compounds include direct inhibitors of the res-
piratory chain enzymes. This is notably the case of capsaicin, an
inhibitor of mitochondrial complex I1[62]; of gallic acid and pyro-
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gallol, inhibitors of complex II [63]; and of quercetin, inhibitor of
the F1-FO ATP-synthase [64].

On the contrary, a study focusing on potential discrepancies be-
tween bioassays revealed that cell cycle arrest could increase cel-
lular volume and average mitochondrial content, yielding overes-
timations of cellular viability when using tetrazolium (MTS)- and
ATP-based assays [65]. Although cell volume and mitochondria
mass are normally strongly coupled [66], drug-induced uncou-
pling may impair results interpretation; e.g., leukemia cell lines
presented enhanced mitochondrial proliferation and respiration
during the very first stages of apoptosis upon treatment with
chemotherapeutic agents such as doxorubicin or gemcitabine
[67,68].

Assays of Cell Viability Based on Plasma Membrane
Integrity

v

Measurement of LDH release

LDH, a cytoplasmic enzyme released in case of advanced cell
membrane damages, is assessed in cell culture supernatants. As
LDH converts lactate into pyruvate, using NAD+ as a cofactor, the
production of NADH can be quantified by reduction of tetrazo-
lium dyes such as INT or MTT into formazan products [69,70].
Any interference with the activity of the enzyme will lead to
underestimations of cellular toxicity. For instance, LDH inhibitors
such as chloroquine display reduced toxicity as compared to neu-
tral red and ATP content assays [71]. Tannins, a class of polyphe-
nols known for their direct interaction with proteins and en-
zymes, also result in LDH inhibition [72,73], as shown for wattle
tannins and tannic acid [74]. A similar effect was observed with
p-aminophenol, resulting in survival overestimation compared
to resazurin assay [75].

Molecules presenting amphiphilic characteristics are also likely
to interfere with the LDH test readout; their detergent-like activ-
ity is prone to permeabilize cellular membranes to release LDH,
yielding overestimation of their cytotoxicity. This has been dem-
onstrated for saponins such as ginsenoside Rg2, glycyrrhizinic ac-
id, or primulic acid 1, for example [76].

Trypan blue exclusion

Viability testing using trypan blue relies on its ability of being ex-
cluded from live cells, an energy-dependent process requiring
ATP. Dead cells or cells undergoing necrosis present compro-
mised membrane integrity, letting the dye penetrate the cyto-
plasm to stain it in blue. The amount of dead/dying cells can then
be manually counted using a hemocytometer, or by means of dig-
ital imaging microscopy. Alternatively, trypan blue may be solu-
bilized and the absorbance measured between 580 and 610 nm
[77]. As trypan blue is a weak acid, its affinity is increased for ba-
sic proteins; nuclei uptake is generally higher due to the presence
of histones, yielding marked blue intensity, whereas the cyto-
plasm remains faintly stained [77]. This method was compared
with the LDH assay, yielding similar survival estimations [78].
The presence of extracellular proteins may influence the readout
of the assay. As compared to LDH and fluorescein uptake assays,
trypan blue staining revealed falsely higher cellular mortality in
an amyloid-B peptide cytotoxicity study [79]; this was inter-
preted as a consequence of amyloid-$ peptide aggregation onto
cell membranes that facilitates the retention of trypan blue.
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Fluorescence staining

Fluorescent dyes that penetrate cells in case of membrane’s in-
tegrity disruption, and generally bind to DNA and/or RNA, are in-
dicative of dying or already dead cells. These dyes are suitable for
a large range of applications such as microscopy imaging, flow
cytometry or microplate fluorescence measurements. Pl ac-
counts among the most widely used of these fluorophores. Once
fixed to DNA and/or RNA, it exhibits a fluorescence intensity of
20-30 fold higher than unbound form [80]. 7-AAD and Hoechst
dyes are other DNA-binding fluorophores widely used for the de-
tection of dead cells.

Assays of Cell Viability Based on Cell Growth|
Proliferation

v

As seen previously, assays based on metabolic activity evaluation,
such as the MTT assay, are at risk not to correlate to the number of
living cells, but rather to the amount of mitochondria-containing
living matter. It was demonstrated that G2/M-arrested cells, con-
taining higher mitochondrial-masses, displayed higher MTT re-
duction ability which was not correlated to the cell number [43].
Assays of cell viability based on cell growth maintain their inter-
est to investigate such cases.

Direct cell counting

Cells can be harvested and manually or automatically counted.
The method was successfully applied to the assessment of growth
rates of Vero and BSC-1 cells after treatment with silibinin [81].
This technique presents the advantage of requiring basic inex-
pensive laboratory equipment but can entail high variability and
is generally tedious.

Evaluation of cell cycle phases distribution

The analysis of cell cycle is a single-cell assay relying on DNA
quantification coupled to flow cytometry. The technique gener-
ally relies on the use of PI, although other DNA-staining fluoro-
phores may be used. Cells must generally be fixed and permeabi-
lized prior to experiment. Quiescent (GO) and G1 cells will have a
single copy of DNA, whereas cells in G2 and mitosis phases will
have twice the amount of DNA, displaying fluorescence inten-
sities twice as bright. Since the cells in S phase are synthesizing
DNA, they will display intensities between those 2 extremes
[82]. Depending on the settings of the system, the proportions
of polyploidic cells (DNA content >G2) and apoptotic/necrotic
bodies (size and DNA content <GO0/G1) can also be estimated.
The first flow cytometric detection of apoptosis was based on this
methodology; in staining hypodiploid (sub-GO) cells, Nicoletti et
al. claimed to assess DNA fragmentation, a feature occurring dur-
ing apoptosis and autophagy [83].

Because DNA quantification relies on fluorescence intensity mea-
surement, it is important to carefully remove cell clumps before
data interpretation, as 2 cells in GO/G1 phases will exhibit the
same intensity as a single cell in G2/M phase [82].

The distribution in cell cycle phases can bring valuable informa-
tion on the proliferative behavior of cells. Whereas the method
cannot distinguish GO (quiescent) from G1 (proliferative) cells,
increased or decreased proportions in S and G2/M phases are in-
dicative of proliferation modulation. Attention should however
be paid to results correlated to cell cycle arrest, such as the G2/
M arrest observed for the flavonoid genistein [43], which should
not be confused with an accelerated proliferation. Molecules that

Reviews RPAE)

are able to block the cell cycle are actively sought as such a cyto-
static effect could contribute to an anticancer activity.

Assays based on DNA synthesis measurement

The BrdU and 3H-thymidine uptake assays are based on their in-
tegration’s rate in the DNA synthesized de novo during the S
phase of the cell cycle, which is directly indicative of cellular pro-
liferation. However, pitfalls including DNA repair, abortive cell
cycle reentry, and gene duplication may be at risk of generating
artifactual overestimations of cellular proliferation [84].

BrdU incorporation: BrdU is a synthetic nucleoside analogue that
can be incorporated by live cells in place of thymidine [80], which
makes this probe a valuable marker of cellular proliferation. Fol-
lowing partial denaturation of DNA, incorporated BrdU can be re-
vealed via immunostaining, using anti-BrdU antibodies. An alter-
native consists in using fluorescently tagged BrdU: the incorpora-
tion of the probe can be detected and quantified by techniques
including flow cytometry, microplate reader measurements, or
(live) microscopy imaging.

3H-thymidine uptake: The quantification relies on the detection of
radiolabeled thymidine by scintillation counting or autoradiogra-
phy. If this technique yields similar results as other proliferation
assays, it also has several drawbacks, including the handling and
disposal of radioisotopes, raising concerns for human health en-
vironmental hazard, and the need for specialized equipment and
facilities [48].

Clonogenic assay

The clonogenic cell survival assay was initially described for
studying the effects of radiation on cells. Considered the “gold
standard” in radiobiology, the assay is applied to examine the ef-
fects of chemotherapeutic agents with potential applications in
the clinic. Before or after treatment, cells from a growing mono-
layer stock are suspended by trypsinization, and about 50 cells
are seeded into a dish. Upon 1-3 weeks of incubation, each single
cell divides several times and forms a colony. Colonies are fixed
with glutaraldehyde, stained with crystal violet and the plating
efficiency (the proportion of cells that grow to form a colony) is
measured with the naked eye [85,86]. The clonogenic assay eval-
uates the reproductive integrity of cells, testing the ability of
every cell in a population to undergo “unlimited” division to form
alarge colony or a clone [86]. All the cells that make up the colony
are effectively the progeny of a single cell [85].

It should be noted that the clonogenic assay detects the loss of
clonogenic potential from all possible causes, including apoptosis
and necrosis, occurring over a much longer period (7-21 days)
after treatment than the typical apoptotic/necrotic and growth
inhibition assays (24 to 72 h).

In trials with combinations of camptothecin, a specific inhibitor
of DNA topoisomerase I, and radiation, the clonogenic assay mea-
sured similar (human melanoma cells) and substantially higher
(human fibroblasts) cytotoxicities than apoptosis and necrosis
assays. Discrepancies were ascribed to cells dying in the period
after the completion of the apoptotic/necrotic assays or to a det-
rimental effect of the additional steps of trypsinizing and replat-
ing the cells for the clonogenic assay [87]. Suboptimal growth
medium, errors in counting the number of cells initially plated,
and the loss of cells by trypsinization and general handling effec-
tively complicate the procedure [85].
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Assays of Cell Viability Based on Morphology Studies
v

Cell size and shape

Observations in phase contrast microscopy can support conclu-
sions drawn from other cytotoxicity tests. Cellular morphologies
characteristic of death type may be observed. Necrotic cells can
be easily detected in adherent cell monolayers from their cyto-
plasmic membrane swelling. On the contrary, blebs, that are typ-
ical of apoptotic processes, can hardly be seen on confluent
monolayers as compared to cell suspensions. The use of annexin
V staining combined with fluorescent microscopy may however
help in identifying apoptotic cells [88]. In phase contrast micros-
copy, plasma membrane shrinkage can also be indicative of apo-
ptosis [89].

The use of microscopy is however regarded as time-consuming,
operator-dependent and tends to underestimate the amount of
dead or dying cells, as early phases of death may not display
marked morphological features [90].

Videomicroscopy

The growth of a population of cells can be evaluated using com-
puter-assisted microcinematography (time-lapse videomicro-
scopy). The method requires specific equipment such as an ob-
servation chamber, with temperature and atmosphere control,
and a phase contrast or fluorescence microscope equipped with
a digital camera recording images at regular intervals (e.g., every
4 min). The time-lapse sequence can then be assembled to form a
movie.

A videomicroscopy system notably allows assessing the number
and duration of cell divisions to reveal mechanistic information
and differentiate cytostatic and cytotoxic activities. Examples ob-
tained in the study of antiproliferative activities of natural prod-
ucts on glioblastoma cells indicate that the method can assess (i)
a growth inhibition by increased duration of cell divisions (ob-
served for ophiobolin A) [91]; and (ii) the triggering of unusual
microtubule dynamics (observed for cembrenoids accumulated
in tobacco upon infection with Rhodococcus fascians) [92].

The cellular motility, a parameter important to the metastatic
process, can also be measured by video tracking of individual
cells [93]. This method revealed that ophiobolin A is able to de-
crease glioblastoma cells migratory capacities [91].

Scoring of cell detachment

As discussed in previous sections, assays based on metabolic
transformation or on enzyme leakage may lead to misinterpreta-
tion if test substances interact with enzymes; alternatively cells
can maintain some enzymatic activity after death. Microscopic
observation of adherent cells, however, can clarify such issues. In
a comparative study employing HepG2 cells, falsely negative tox-
icity has been reported, that was related to a loss of cells adher-
ence [45]. In fact, incubating MTT or resazurin in unwashed wells
allowed detached cells to reduce both dyes, yielding overestima-
tion of cell survival.

Although manual and tedious, the assessment of cell detachment
by a scoring method can prove important to assess cellular phe-
nomena; such a scoring has notably been successfully applied to
study antifibrotic activities of Chinese herbal medicines [94].
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Apoptosis[necrosis differentiation: annexin V[Pl binding
The assay is based on the measurement of phosphatidylserine
translocation from the inner to the outer side of the plasma
membrane, a process occurring in the early steps of apoptosis
[19]. Annexin V, a serum protein of unknown function strongly
binds to phospholipids, such as PS, in a Ca?*-dependent mode. In
1995, Vermes et al. designed an assay in which FITC-labeled an-
nexin V could detect PS externalization [95]. The assay was
coupled with PI staining to allow detection of later phases of ap-
optosis and necrosis during which plasma membrane’s integrity
gets altered. These two markers, simultaneously detected by flow
cytometry or by fluorescence microscopy [96], allow differentiat-
ing the early from late apoptotic stages and apoptosis from ne-
crosis. As apoptosis is expected to last between 12 and 24 hours
depending on the stimuli and cell type [88], annexin V/PI binding
only provides information on a precise time-point, ignoring the
total amount of cells that have already undergone apoptosis. The
assay presents high robustness as PS exposure is apoptosis-spe-
cific. However, care should be taken when working with herbal
substances containing saponins, which may induce membrane
integrity disruption and let PI penetrate the cytoplasm [97].

Caspase 3 activity detection

Caspase 3, a member of the Cystein-ASPartic acid proteASE fam-
ily, is a key executioner of apoptosis phases; it is synthesized as a
proenzyme, which is cleaved and activated by both caspases 8
(extrinsic pathway) and 9 (intrinsic pathway) [19]. In turn, it
cleaves caspases 6 and 7, which will pursue the apoptotic process.
One of the most commonly used tests to highlight apoptosis sig-
nal - regardless of the pathway involved - is based on the enzy-
matic cleavage by caspase 3 of a synthetic peptide probed with an
optically active dye. The release of probes such as p-nitroaniline
or 7-amino-4-methylcoumarin allows colorimetric or fluoromet-
ric determination of the caspase 3 activity, respectively [98].

As discussed earlier, fluorometric determinations may be at risk
of false interpretation when testing natural products, fluorescent
[46] or absorbing, at the excitation or emission wavelengths of
the fluorophore.

Fluorescence staining for autophagy - AO

AO is a membrane permeable dye which once bound to DNA,
emits green fluorescence, whereas RNA binding emits red fluo-
rescence. It therefore can be used for cell cycle analysis (in place
of PI) and also for the detection of apoptotic and autophagocytic
cells. Indeed, AO can also be used to stain acidic compartments
such as lysosomes, where it emits a orange-red fluorescence [99].

Mitochondrial transmembrane potential

Mitochondria play a key role in the apoptotic pathway: opening
of the MPTP triggers disruption of mitochondrial membrane in-
tegrity and the loss of the Ay This results in the release of cas-
pases activators such as AIF and cytochrome c [19]. Alternatively,
the loss of transmembrane potential can also lead ATP synthase
to reverse its activity and deplete the cell in ATP stocks [100].
Other factors that can cause the MPTP to open include massive
Ca?* influx and the presence of free radicals.

Numerous lipophilic cationic dyes, such as rhodamine 123, that
accumulate in the mitochondrial matrix have been developed
[80]. These can be detected and assessed in live cells by fluores-
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cence microscopy, flow cytometry, or microplate reader mea-
surement.

Several natural products having an influence on the MPTP have
been identified. For example, these include compounds able to
block MPTP - thus blocking apoptotic/necrotic processes — such
as tanshinone IIA, isolated from Salvia milthorrhiza Bunge [101];
or compounds such as wogonin, isolated from Scutellaria baica-
lensis Georgi, able to promote MPTP opening by cytoplasmic
Ca?* increase, and thus presented as good candidates for antitu-
mor activity [102].

Assays Based on the Assessment of DNA Damages

\4

Depending on the extent of DNA damage, especially double-
strand breaks, cells may trigger death programs. Detecting DNA
damage at concentrations sensibly lower than ICsq allows inves-
tigating this possible cause of death.

Comet assay

The comet assay, also called single-cell gel electrophoresis assay,
is a short-term genotoxicity test widely used for the quantifica-
tion of (i) DNA strand breaks, crosslinks, and alkali-labile sites in-
duced by a series of physical or chemical agents [14,103-106]
and (ii) incomplete excision repair events in individual eukary-
otic cells [104,107]. Individualized cells embedded in agarose
are lysed and electrophoresed. Fluorescence microscopy coupled
with PI staining allows visualizing denatured DNA fragments mi-
grating out of the cell nucleus during electrophoresis. The image
obtained is a “comet” with a distinct head consisting of intact
DNA and a tail containing relaxed DNA loops or broken pieces of
DNA [108]. The comets can be classified by visual examination
[109] or measured from morphological parameters obtained by
image analysis and integration of intensity profiles [110-112].
The comet assay is a well-established, highly sensitive, rapid, and
simple genotoxicity test [103,113,114]; the conditions for carry-
ing a correct comet assay [13] and data interpretation [115] have
also been established. In the study of death causes, some draw-
backs can be encountered: (i) indirect mechanisms related to cy-
totoxic concentrations (e.g., DNA fragmentation in apoptosis or
necrosis) can lead to positive effects [116]; and (ii) a ROS-mediat-
ed phenomenon may result in spurious DNA oxidative damage
revealed by this probably oversensitive assay.

TUNEL assay

The TUNEL assay allows the detection of DNA fragmentation as a
consequence of internucleosomal cleavage of genomic DNA, typ-
ical of cells undergoing apoptosis [117,118] by labeling the ends
of the degrading DNA with the TdT. Identification of TdT-labeled
degrading DNA in the nucleus of cells is not sufficient to distin-
guish apoptosis from necrosis as chromosomal DNA degradation
also occurs in necrosis; therefore further studies are required
[119]. False positive stainings in the TUNEL assay were reported
to be caused by the release of endogenous endonucleases as a re-
sult of proteinase treatment; this could be abolished by pretreat-
ment of tissue slides with diethyl pyrocarbonate [120].

yH2AX assay

The measurement of YH2AX provides a biomarker of DSBs and
may identify potential genotoxic activity [121]. yH2AX is mea-
sured by a labeled monoclonal antibody and microscopy (deter-
mination of foci number) or flow cytometry [122,123]. The

Reviews HPAW)

YH2AX assay, an early marker for DNA damage, was found capa-
ble of detecting strand breakage at levels 100-fold below the de-
tection limit of the alkaline comet assay [124]. One yH2AX focus
is estimated equivalent to one DSB [125], at least when less than
100-150 DSBs are produced [126]. The assay is mechanistically-
underpinned. Indeed, it is well-known that YH2AX facilitates the
repair of clastogenic DNA DSBs and is an integral component in
the DNA damage response machinery of mammalian cells [121].
Due to the high sensitivity of the assay, drawbacks similar to
those of the comet assay are expected.

Ames test

The Ames test is an in vitro method for genotoxicity assessment.
It is a bacterial reverse mutation assay performed with histidine-
dependent auxotrophic mutants of Salmonella typhimurium
(strains TA97, TA98, TA100, TA102, TA1535, TA1537, etc.) or
tryptophan-dependent auxotrophic mutants of Escherichia coli
(WP2 isogenic strains uvr) [127]. In the presence of a mutagenic
product, selective pressure, from a medium depleted in the es-
sential amino acid, results in reverse mutations and the growth
of colonies that are counted. Several different strains of Salmonel-
la must be used because each strain individually assays for a par-
ticular type of mutagen [128-130].

The Ames test is a well-established, highly sensitive, rapid, and
simple genotoxicity test. However, it does not detect every geno-
toxic insult. Some common compounds, including flavonoids,
yield very positive Ames tests but, having not shown any indica-
tion of carcinogenicity in animal studies, are currently consid-
ered as non-carcinogens [131].

Micronucleus test

A micronucleus is an acentric chromosomal fragment or whole
chromosome left behind during mitotic cellular division, appear-
ing in the cytoplasm of interphase cells as small additional nu-
cleus [132]. Micronuclei induction can result from agents that in-
duce chromosomal breaks (clastogens) or agents that induce
mainly chromosomal gain/loss (aneugens) [133,134]. An index
of chromosome breakage and loss can be easily detected by fluo-
rescent staining of DNA (e.g., using Hoechst, DAPI, or AO) and mi-
croscopy analysis. Clastogens and aneugens are discriminated by
use of FISH analysis or by size-classification of micronuclei. OECD
recognizes the test as one of the most successful and reliable for
the identification of genotoxicity [135]. The test is sensitive and
uncomplicated to perform and to assess [133] but difficult to up-
scale in a high-throughput format. Automated assays based on
image analysis method to size-classify micronuclei in order to
discriminate aneugens from clastogens were however recently
developed [136].

UDS assay

The UDS assay measures chemical-induced DNA excision repair
by detecting labeled thymidine (3H-TdR) incorporation. The in-
duction of DNA repair mechanisms is presumed to have been
preceded by DNA damage, indicating the DNA damaging ability
of a chemical [137,138]. A core limitation of the UDS assay is its
inability to indicate if a Xenobiotic is mutagenic; indeed, it pro-
vides no information regarding the fidelity of DNA repair and it
does not identify DNA lesions handled by mechanisms other than
excision repair [137].

Bunel Vet al. Methods Applied to... Planta Med 2014; 80: 1210-1226

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



IPAEE Reviews

Assays to Evaluate the Involvement of Oxidative Stress
in Cytotoxicity
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ROS [including superoxide radical (O,~), hydroperoxyl radical
(HO,"), hydroxylradical (HO"), peroxyl radical (ROO*) and alkoxy!l
radical (RO"), hydrogen peroxide (H,0,), singlet oxygen ('0,),
and hypochlorous acid (HOCI)] and RNS [including nitric oxide
NO*, nitrosonium cation (NO*), nitroxyl anion (NO~), or peroxyni-
trite (ONOO™)] [40,41] play essential roles at different levels of
homeostasis; they can however induce deleterious effects, gener-
ally consisting in DNA damages, oxidation of unsaturated fatty
acids (lipid peroxidation), oxidation of proteins, and oxidative in-
activation of enzyme co-factors [139].

General pitfalls inherent to oxidative stress evaluation
Because the generation of ROS/RNS can be the cause or the con-
sequence of processes involved in cytotoxicity, their direct detec-
tion - or the detection of their effects - may give important clues
at implicated mechanisms. An elevated oxidative stress is gener-
ally indicative of a cytotoxic background that can be countered by
antioxidants such as green tea polyphenols [140], silymarin
[141], or coumarins [142]. These would then be revealed as che-
moprotective (anti-cytotoxic) by most of the cytotoxicity tests we
review here. But the situation may be quite difficult to assess as
some antioxidants can also act as pro-oxidants; this was notably
demonstrated in vitro for ascorbic acid [143]. The phenolic com-
pounds of apple, such as gallic acid or quercetin, were shown to
induce the production of H,O, upon incubation in culture me-
dium; this was linked to an inhibition of HepG2 cells prolifera-
tion, suggesting that similar artifactual generation of oxidative
stress could have led many studies to conclude falsely positive
antiproliferative effects of flavonoids and phenolic compounds
[144].

Moreover, several quinones can undergo redox cycling upon in-
cubation with reducing agents such as NAD(P)H [145], resulting
in the generation of reactive oxygen species, which can in turn
(i) oxidize cysteine residues of proteins [146] and obviously inter-
fere with enzyme-based assays; and (ii) oxidize and/or deplete
reduced metabolites such as NADH or ATP, interfering with as-
says such as MTT or ATP content determination [147]. Thus, oxi-
dative stress should be evaluated when working with quinone-
containing natural products.

Probes for the detection of ROS and RNS

The quantification of ROS/RNS is not an easy task as they usually
have short lifetimes and several cellular mechanisms are in-
volved in their capture. Most often, these reactive species are
measured indirectly by detecting their pro-oxidant effects, either
on probes or on cellular biomarkers.

A large variety of fluorescent probes are marketed for the deter-
mination of ROS and RNS amounts [148], some being more or less
specific towards a single or several ROS/RNS. The H,DCFDA,
probably the most often used dye, penetrates cytoplasm where
esterases cleave acetate moieties — preventing further external-
ization - and acquires fluorescence properties upon oxidation,
which allows quantification by fluorometry or flow cytometry
[149]. Nonetheless, it is estimated that oxidized dichlorofluores-
cein is prone to leak plasma membrane by passive diffusion, es-
pecially upon transmembrane potential impairment [150] as
well as through the efflux pump MRP1 [151]. Passive leakage
can be partially prevented by the use of carboxy-substituted
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H,DCFDA probes that are more efficiently retained in the cyto-
plasm [152].

Measurement of reduced glutathione content

GSH is a cysteine-containing tripeptide whose thiol moiety can
react with oxidizing agents, forming GSSG. Once oxidized, GSSG
can be reduced back to GSH by glutathione reductase, using
NADPH as a cofactor [153]. Thus, assessing GSH content some-
what corresponds to evaluating the cellular redox potential; its
decrease is generally correlated to oxidative stress and predictive
of a cytotoxic action. Several approaches have been developed for
GSH determination, among which an enzymatic recycling meth-
od allows rapid and high-throughput analysis [154]. This assay is
based on the reduction of DTNB to TNB which is then determined
by spectrophotometry. GSSG formed during the reaction is re-
cycled by glutathione reductase and NADPH. Proper removal of
test substances from sample prior to analysis will avoid the pres-
ence of redox interfering compounds or direct inhibition of gluta-
thione reductase. This last effect was notably highlighted for
ajoene, a compound derived from alliin, originating from garlic
[155].

Other approaches include the use of monochlorobimane, a probe
acquiring fluorescence upon reaction with low molecular weight
thiols, such as glutathione, N-acetylcysteine, mercaptopurine, or
peptides, and determined by flow cytometry [156].

In an in vitro study using dermal fibroblasts, Kim et al. demon-
strated that high cell densities led to improved ROS resistance by
increasing the total antioxidant capacity of the cell culture [157].
The authors suggested that cell density should be considered as a
critical point when studying oxidative stress.

TBARS assay

Lipid peroxidation is generally not considered as a cause of cellu-
lar death, but rather a late-stage event. The most popular test to
assess lipid peroxidation is based on the reaction of MDA with
TBA, employed for the first time by Patton and Kurtz in 1951 for
the evaluation of milk fat oxidation [158]. The generated product
can then be assessed colorimetrically or fluorometrically. How-
ever, thiobarbituric acid is not specific to MDA but reacts with
all aldehyde end-products of lipid peroxidation, making the as-
say notoriously difficult to reproduce; the test has thus been re-
named TBARS assay. Several non-aldehydic compounds can also
react with TBA: these include ketones, ketosteroids, acids, esters,
sugars, imides and amides, amino acids, oxidized proteins, pyri-
dines, pyrimidines, and vitamins commonly found in herbal
products [159]. MDA may also originate from other sources than
lipid peroxidation; the reaction between MDA and TBA requires
elevated temperature and low pH, conditions which are prone to
favor the generation and further degradation of lipid peroxides,
or the formation of MDA-reactive organic compounds [160].
More specific assays of MDA should be favored, based on high-
performance liquid chromatography with pre-column derivati-
zation or with electrochemical detection [160].

Other Approaches Applicable to in Vitro Primary
Toxicology Testing

v

Cytoskeleton integrity

The cytoskeleton plays an important role in many cellular pro-
cesses including cell movement, cell development, and cell mor-
phology. Microtubules, actin meshwork, and intermediate fila-
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ments have been identified as major targets in the development
of drugs used for cancer treatment [161,162]; their study may
complete the primary toxicity screening by yielding important
clues on the mechanisms of cytotoxicity.

Interference with microtubules: Scintillation spectroscopy was
the first technique used to detect microtubule inhibitors. After
incubation with radiolabeled test products, intact cells or protein
extracts are suspended in a scintillation fluid, and the bound ra-
dioactivity is measured. This method allowed identifying micro-
tubules as a target for colchicine. This method, sensitive and sim-
ple, has been largely used to screen cytotoxic products [162,163].
The difficulties of working with radioactivity have been over-
come with the now common use of immunofluorescence coun-
ter-staining of anti-tubulin antibodies. Growing cells on glass
coverslips, the fluorescence can be evaluated by microscopy and
digital imaging, which has a number of advantages. This very sen-
sitive method, which does not involve any enzymatic reaction,
can also be routinely applied to detect different types of cell
death-related events at the same time due to the distinct absorp-
tion/emission spectra of co-staining procedures (c.f. Sections
“Fluorescent staining” in “Assays of cell viability based on plasma
membrane integrity” and “Fluorescence staining for autophagy -
acridine orange” in “Assays to evaluate the types and mechanisms
of cell death”) [90,162]. The discovery of microtubule-destabiliz-
ing Vinca alkaloids, vinblastine and vincristine, has helped to es-
tablish the link between microtubules and cell death; stabiliza-
tion of microtubules is also an efficient cytotoxicity mechanism,
as shown for epothilone or taxol [164].

Interference with the actin meshwork: The actin cytoskeleton gov-
erns cell motility and shape and undergoes continuous remodel-
ing. Small changes in its turnover’s dynamic may lead to dramatic
cellular changes. Phalloidin, a toxin isolated from the mushroom
Amanita phalloides, is able to bind F-actin and prevent its depoly-
merization. Fluorescently tagged phalloidin allows microscopic
visualization of the actin cytoskeleton, after cells have been fixed
and permeabilized [165]. Palytoxin and its analogues, such as os-
treocin-D or ovatoxin-a, isolated from zoanthids, were identified
by immunofluorescence as potent tumor promoter and cytotoxic
agents, which lead to actin filament distortion and trigger cell
death or apoptosis [161]. Cytochalasin D (amycotoxin alkaloid),
latrunculin A (a macrocyclic alkaloid from marine sponges), and
jasplakinolide (a macrocyclicpeptide from marine sponges) all
modulate actin polymerization and indicate an anti-migratory
potential possibly useful for metastasis forestalling [166].

The use of reporter genes

Reporter genes, based on cell transfection, allow for direct evalu-
ation of gene transcription upon stimulation of dedicated recep-
tors or pathways. The technique involves the insertion of a
marker gene (reporter) next to a gene of interest (target) and
presents a broad range of applications. Examples of reporters in-
clude GFP and luciferase. By highlighting changes in the expres-
sion of a target gene, it is possible to elucidate the mode of action
of toxicants, or to screen for potential toxicity involving the tar-
geted pathway [167]. Although luciferase has a short half-life,
some natural compounds may be at risk of stabilizing the en-
zyme, leading to its accumulation and to increased biolumines-
cence [46]. On the contrary, test compounds may also act as di-
rect inhibitors of the enzyme (as discussed earlier).

GFP, firstly isolated from the jellyfish Aequorea victori, presents
maximum excitation at 395 nm, and emission at 504 nm [168].
GFP-based reporter lines are numerous, and are not limited to
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cell culture systems, but can also apply to model organisms such
as zebrafish or C. elegans, allowing direct visualization of expres-
sion patterns [168,169]. As previously described, GFP may be
used to tag actin, allowing direct visualization of the actin cyto-
skeleton [165].

For both reporting systems, natural compounds may interfere
mainly as fluorescence/luminescence quenchers.

The toxicogenomics approach

“Toxicogenomics” [170,171] is based on the concept that the
toxic effects of xenobiotics on biological systems are generally re-
flected at cellular level by their impact on the expression of genes
(trancriptomics) and proteins (proteomics) and on the prod-
uction of small metabolites (metabonomics) [170,172-175].
Such studies involve a high number of measurements per end-
point to acquire comprehensive, integrated understanding of
biology and to simultaneously identify the different factors (e.g.,
genes, RNA, proteins, and metabolites) rather than each of those
individually [176]; changes in transcriptomics, proteomics, and/
or metabonomics profiles may serve as early, sensitive indicators
of a potential toxicity and are thought to precede toxic outcomes
[173]. In particular, gene expression data (transcriptomics) are
thought to be more sensitive than traditional toxicological end-
points [177]. This approach is quite promising for future compre-
hensive primary toxicity screening but still needs considerable
work and validation. A recent review evaluated the use of “omics”
technologies to assess genotoxicity, teratogenicity, and nephro-
toxicity, with emphasis on the application to herbal products
and mushrooms, and analyzed the advantages and limitations of
each approach [178].

Model organisms

Quite recently, easy-to-handle model organisms have been im-
plemented, providing higher degree of physiological relevance
and mechanistic information without the complexity of the clas-
sical in vivo models.

Among these, the zebrafish (Danio rerio) is an efficient and prom-
ising tool for toxicity investigations. Females can spawn up to
hundreds of eggs each week; the small size of embryos and larvae
(1-5mm, depending on developmental stage), along with their
transparency, allow direct microscopy observation of organs
[169]. More, the rapid development of the offspring permits ac-
celerated teratogenicity and genotoxicity studies in multiwell
plates [179]. Assessments can be performed by adding the test
compounds/extracts to the surrounding water. As a consequence,
the study of less polar compounds/extracts will be hampered by
their poor hydrosolubility. Zebrafish can also be transfected with
reporter genes. Blechinger et al. established a stable transgenic
zebrafish line expressing eGFP coupled Hsp70 upon exposure to
cadmium. The transgene model proved to be reproducible and to
react in a dose-dependent manner [180].

Other model organisms include Caenorhabditis elegans, a 1 mm
long nematode that can be inexpensively cultivated in Petri
dishes seeded with bacteria as a source of food [181]. Each worm
produces about 300 eggs and completes its reproductive life cycle
in 3 days, allowing to grow large populations rapidly [181]. Many
mutant strains are available, easy to grow and to maintain, allow-
ing to probe various metabolic and toxicity pathways [182]. C. el-
egans has been used in applications such as the study of aging,
oxidative stress, neurotoxicity, genotoxicity, and nematocid ac-
tivity [183,184].
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In silico methods

These predictive methods generally refer to a computational ex-
periment, mathematical calculation, or scientific analysis of sub-
stances data through a computer-based analysis [185], including
rule-based expert systems, QSAR and three-dimensional compu-
tational DNA-docking model to identify molecules capable of
non-covalent DNA interaction [178]. The application of in silico
methods to complex mixtures such as herbal extracts is by evi-
dence limited to the detection of known phytochemical com-
pounds bearing known or new structural alerts for toxicity activ-
ity; they could, however, help to elucidate which compounds are
responsible for a proven effect [178].

Discussion
v
In the past decades, during which the herbalism trend has been
continuously growing, the safety of herbal products has become
a major concern in ensuring public health. Many herbs and ex-
tracts that are not fully characterized for their constituents or
their activities, even sometimes for their botanical status, are
used. Although numerous laboratory studies investigate tradi-
tionally used herbs, these usually focus on phytochemistry and
on deciphering the pharmacological aspects of bioactivity(ies).
Meanwhile, the toxicological aspects, including eventual risks to-
wards human health, are still too often neglected.
This review presents the most commonly used in vitro assays
among the numerous tests that can be applied for primary toxic-
ity screening. These basic assays yield invaluable information,
important for further investigations. Indeed, from cytotoxicity
curves, the concentrations for further testing can be deduced.
For compounds intended as cytotoxic (e.g., anti-cancer agents),
further mechanistic studies can be performed at concentrations
up to ICsg to unravel the key events in cell killing. By contrast,
when assessing compounds for deleterious events that would be
indicative of long-term effects (i.e., genotoxicity, chronic toxic-
ity), studies should be performed at concentrations in the range
ICy to IC3p [13]. Compounds assumed to be protective should be
tested from the highest no effect concentration up to ICyg; if a
combination toxic agent/protective agent is investigated, the cy-
totoxicity of the combination should ideally be tested [13]. In all
cases, traditional use is an additional important guidance to se-
lect relevant concentrations and exposure schemes.
Comprehensive guidelines have been recently published, regard-
ing the cytotoxicity assays and the tests to unravel the death
pathway induced [90]. Their application to the testing of natural
compounds is advisable, taking into account the short-comings
and possible artifacts that can be encountered in testing complex
and multi-component mixtures, such as herbal extracts. The ma-
jor sources of problems underlined in the present review should
be considered, especially in high-throughput test systems that
may overlook basic questions. As such, ensuring proper knowl-
edge of their principle (summarized in © Table 2) appears as a
pre-requisite.
As discussed in the present review, bioassays often present a risk
of misinterpretation. Whatever the method used, the following
general guidelines should be advocated in testing natural prod-
ucts for primary toxicity:
» Verify the consistency of tested material with medicinally-
used material (e.g., through chromatographic or metabolomics
profiling);
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» Use at least 2 assays relying on separate principles of detection,
i.e., that are methodologically unrelated, and check for any dis-
crepancy;

» Where relevant, check for natural product-mediated enzyme
inhibition (e.g., LDH assay);

» Where relevant, evaluate the redox potential of the tested
product (e.g., MTT assay);

» Work with “relevant” concentrations, provided that, according
to Paracelsus, only the dose makes the poison; justify the se-
lected concentrations range; beware of excessive changes in
pH or osmolality [13];

» Perform UV-visible and phytochemical characterization of the
tested extract, as some classes of compounds are at risk of in-
terfering with many biological assays;

» Evaluate the effect of any co-solvent applied to the test system
(e.g., DMSO, methanol);

» Plan experiments that respect the statistical integrity of data;
wells from a single multi-well plate are probably not statisti-
cally-independent;

» Assess solubility at the beginning and the end of the treatment,
as solubility can change during the course of exposure in the
test system;

» Carefully and exhaustively wash cell cultures before measure-
ments so as to remove as much test substance as possible.

Conclusion

v

Natural products often benefit from a long history of therapeutic
use and are thus generally acknowledged, by the public but also
by therapists, as non-toxic. This assumption has however seldom
been verified, and safety issues are raised about the use of less
documented herbs. In this regard, primary screenings involving
validated in vitro systems can help in assessing potential toxic-
ities by rapidly pinpointing herbs that may cause concerns. It
should however be noted that there may be significant influence
of pharmacokinetics, such as the rate or extent of absorption, dis-
tribution, and metabolism that may obscure the conclusions of in
vitro tests. In the large majority of cases, there are no data avail-
able regarding metabolism and ADME for a given herbal medi-
cine product. Herbal drugs are also highly complex mixtures of
potentially active ingredients, including compounds that may in-
terfere with in vitro assays. Consequently, only a careful interpre-
tation of the results obtained in such researches, based on a thor-
ough understanding of the principles and limitations of applied
tests, will avoid misleading positive or negative conclusion on
the toxicology of tested natural products.

Acknowledgements

v

Valérian Bunel is a fellow of the Fonds de la Recherche Scientifi-
que - FNRS (FRIA grant).

Conflict of Interest
v
None declared.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



Reviews

Table 2  Principles of major tests for toxicity assessment.

Test Principle of the assay

Assays based on metabolic activity

Tetrazolium-based assays Redox sensors (MTT, XTT, MTS or WSTs) reduced by cellular metabolites such as NAD(P)H into formazans. The
proportion of living cells is evaluated by spectrophotometry of formazan’s concentration.

Resazurin assay As for tetrazolium dyes; fluorometric or spectrophotometric measurement of resorufin.

Neutral red Neutral red penetrates living cells and remains trapped in lysosomes. The amount of trapped dye is proportional
to the number of cells.

ATP content Enzymatic assays in which ATP is a cofactor for the oxidation of luciferin by luciferase.

Assays based on plasma membrane integrity

LDH release LDH leaks from altered cytoplasmic membranes and is determined enzymatically by the conversion of NAD* into
NADH, which in turn reduces a tetrazolium dye.

Trypan blue exclusion Trypan blue penetrates membranes of live cells freely and is readily pumped out. In dying cells, ATP stocks drop
down, and externalization of trypan blue stops.

Fluorescence stainings Dyes penetrate cells when membranes are altered and bind to DNA and/or RNA, which modifies their fluores-

cence properties.

Assays based on cell growth|proliferation

Cell counting Cell suspensions can be counted with the use of a hemocytometer. Adherent cells require trypsinization.

Cell cycle phases distribution Cells are permeabilized and stained with DNA markers (c. f. Fluorescence stainings). Depending on the dye, prior
RNA degradation may be required. Cells fluorescence intensities are recorded and phases distribution are
analyzed with the assumption that cells in G2 and M phases have twice the amount of DNA as compared to GO
and G1 phases. The S phase cells display fluorescence intensities ranging between G2/M and G0/G1 cells.

DNA synthesis measurements Measurement of the incorporation rate of nucleoside-like probes (such as BrdU or *H-thymidine) in DNA, which
occurs during the S phase of the cell cycle.
Clonogenic assay Measurement of the ability of cells to form clonic colonies on agar dishes. Individual cells able to proliferate form

aggregates that can be fixed, stained and counted.
Assays based on morphological evaluations

Cell size and shape Phase contrast microscopy can be informative of cell death type (e.g., swelling during necrosis or shrinking
during apoptosis).

Videomicroscopy Recording and assembling images obtained with phase contrast or fluorescence microscopy allows evaluation of
proliferation rate and motility of adherent cells.

Scoring of cell detachment Microscopic observation of adherent cells can help determining cell detachment by means of cell density
evaluation.

Assays for the detection of cell death mechanism

Annexin V/PI staining Detection (i) of externalized phosphatidylserine moieties, an early hallmark of apoptosis, by fluorescently labeled
annexin V; and (ii) of membrane’s integrity disruption, a marker of necrosis or late-stage apoptosis, by Pl staining
of DNA and RNA.

Caspase 3 activity The measurement of the activity of caspase 3, a key enzyme of apoptotic processes, reflects the apoptosis rate.

Fluorescence staining for autophagy Measurement of autophagic vacuoles accumulation. Acridine orange penetrates cells freely and emits orange-
red fluorescence in acidic environments such as in lysosomes.

Mitochondrial transmembrane potential Lipophilic cationic fluorescent dyes, such as rhodamine 123, are readily sequestered by the matrix of active

mitochondria. When mitochondrial membrane potential drops, fluorescence no longer localizes in the mito-
chondria but in the whole cytoplasm.

Assays based on the assessment of DNA damage

Comet assay The Comet assay is a single cell gel electrophoresis method that measures DNA strands breakage.

TUNEL assay The TUNEL assay relies on the evaluation of DNA fragmentation, a feature of apoptosis. DNA breaks present nicks
to which dUTP is added with help of the TdT enzyme. The addition of a fluorescent tag or specific antibodies
allows the detection of dUTP, either by flow cytometry, fluorescence microscopy, or spectrophotometry.

yH2AX assay DSBs fragmentations can be quantified using serine139-phosphorylated histone H2AX (yH2AX), a marker for
DNA damages that can be detected with specific antibodies. Fluorescence microscopy allows for the determi-
nation of yH2AX foci, a direct measurement of DSBs.

Ames test An auxotrophic bacterial strain is cultivated on a medium depleted in an essential amino acid. Genotoxic com-
pounds able toinduce mutations can reverse the auxotrophic characteristic, resulting in bacterial clones growth.
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Colonies can then be counted.

Micronucleus detection The nucleus of cells suffering DNA damages can exclude portions of chromosomes. Fixing and staining the cells
with a DNA probe allows the detection of micronuclei under a microscope.
Unscheduled DNA synthesis The assay is based on the measurement of *H-thymidine incorporation in the DNA of cells that are not supposed

to replicate their chromosomes (i.e., repair cells in the S phase).
Assays for the measurement of oxidative stress

Probes for ROS/RNS Oxidative properties of ROS/RNS are used to convert more or less specific probes into fluorophores. These are
quantified with a fluorometer or with a flow cytometer.

Measurement of GSH Among the most widely used methods, the reduction of TNB to DTNB allows indirect spectrophotometric
determination of reduced glutathione.

Thiobarbituric assay Thiobarbituric acid reacts with aldehydes which are the end-products of lipid peroxidation. The generated

product can be assessed fluorometrically or spectrophotometrically.
continued
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Table 2 Continued

Test Principle of the assay

Other assays
Cytoskeleton integrity

Methods notably include fluorescence immunostaining or phalloidin staining prior to microscopic examination

or flow cytometric determination.

Reporter genes

Upon activation of the investigated pathway, a transfected reporter (marker) gene is expressed; generally a

fluorescent protein. Fluorescence microscopy or flow cytometry can be used to detect or quantify the expression

of target genes.
Toxicogenomics

Toxicogenomics rely on an array of techniques that allow collecting exhaustive data related to the expression of

genes, proteins, and metabolites in order to assess the toxicological potential of a substance.

Model organisms

These include in vivo organisms that are compatible with medium/high throughput experiments (e.g., zebrafish,

Caenorhabditis elegans, Drosophilia melanogaster). They provide higher degree of physiological relevance and
mechanistic information than in vitro models.

In silico methods

Computer-assisted methods including, rule-based expert systems, QSAR models, or 3D computational docking,

that either compare a given compound with known toxicants or measure docking abilities towards biological

targets.
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