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The relationship of humanswith our environmentalmicrobes
is documented throughout history. The discovery of the
smallpox vaccine by Edward Jenner and the great pandemics
of the Bubonic Plague and the 1918 influenza have demon-
strated the volatile and parasitic side of microbes. However,
we also have mutualistic and commensal relationships with
the microbes in our environment. Recently, the Human
Microbiome Project (HMP) consortium took on the task of
documenting what constitutes a healthymicrobiome.1–4 This
question has help to highlight studies demonstrating that
dysbiosis of themicrobiome is associatedwith type 2 diabetes
mellitus, obesity, inflammatory bowel disease, and colorectal

cancer.5–8 Further, dysbiosis of the microbiome has been
implicated as a cause for preterm birth. Gravidae that under-
go preterm birth often have an intrauterine infection with
increases in inflammatory cytokines,9,10 such as IL-6 and IL-
1β. Thus, these studies have begged the question of how do
we establish and maintain a healthy microbiome. With the
exponentially expanding interest in human microbiome re-
search, a working knowledge of the methodology and tools
used in thisfield is fundamental to translational research. This
is notably true in reproductive and perinatal research initia-
tives, where there is a tremendous potential need for inves-
tigators well versed in both the technology and biology of the
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Abstract Whole genome shotgun sequencing (WGS) has been increasingly recognized as the
most comprehensive and robust approach for metagenomics research. When com-
pared with 16S-based metagenomics, it offers the advantage of identification of species
level taxonomy and the estimation of metabolic pathway activities from human and
environmental samples. Several large-scale metagenomic projects have been recently
conducted or are currently underway utilizing WGS. With the generation of vast
amounts of data, the bioinformatics and computational analysis of WGS results become
vital for the success of a metagenomics study. However, each step in the WGS data
analysis, including metagenome assembly, gene prediction, taxonomy identification,
function annotation, and pathway analysis, is complicated by the shear amount of data.
Algorithms and tools have been developed specifically to handle WGS-generated
metagenomics data with the hope of reducing the requirement on computational
time and storage space. Here, we present an overview of the current state of
metagenomics through WGS sequencing, challenges frequently encountered, and
up-to-date solutions. Several applications that are uniquely applicable to microbiome
studies in reproductive and perinatal medicine are also discussed.
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expanding field of research. While an increasing number of
investigators are familiar with and employing 16S-based
metagenomic approaches, there are far fewer investigators
who have a working knowledge of alternative metagenomic
approaches.

Before the era of massively parallel NextGen sequencing,
the clone-based metagenome approach in combination with
Sanger sequencing was used for early metagenomics re-
search. First, DNA content of a genomic clone is sheared
into random fragments before cloning fragments into plasmid
vectors that are grown to produce monoclonal libraries
containing enough genomic material for sequencing. Al-
though Sanger sequencing produces long reads (100–2,000
bp), usually only a few selected inserts could be obtained.
Thus, this process is low throughput and suffers from the
limitation of assembly regions with large repeats and cloning
bias. Hence, it is not surprising that NextGen sequencing
(NGS) techniques have quickly replaced Sanger sequencing
because of their collectively unique advantages. In addition to
economical low per base cost and higher throughput, the
cloning step and its inherent problems seen in Sanger se-
quencing methods are no longer issues for NGS techniques.
Environmental samples can be sequenced directly by NGS
techniques, which allows for the investigation of unculturable
and low abundance species. Therefore, the comprehensive
characterization of more complex and diverse microbial
communities, such as microbial communities related to the
human reproductive system, become feasible. NGS techni-
ques used in metagenomics research mainly include 454
Genome Sequencer Pyrosequencing (454 Life Sciences; Roche
Company, Branford, CT) for 16S rDNA sequencing, Solexa/
Illumina (Illumina Inc., San Diego, CA) for whole genome
shotgun sequencing (WGS) studies, and the most recent
Helicos (Helicos Bio Sciences, Cambridge, MA) single-mole-
cule sequencing technology also for WGS studies.11

The majority of recent studies examining the bacterial
flora communities residing within humans have utilized 16S
rDNA sequencing techniques. The nine variable regions of the
16s rRNA gene are flanked by conserved stretches in the
majority of bacteria. This conservation can be used as targets
for PCR primers with near-universal bacterial specificity.
Therefore, through 454 Pyrosequencing, sequences read are
obtained from one region of the 16S rRNA gene, which is then
quantified and subsequently assigned a taxonomy. Thus,
when compared with WGS techniques of the full length
16S rRNA gene, the coverage of each sample is much higher
and many more samples are able to be run in parallel using
bar-coding system. However, the downside to WGS techni-
ques is that a small proportion of reads could be assigned to
lower level taxonomy due to the shorter read length. Overall,
the resolution of the community composition obtained with
16S Pyrosequencing techniques is orders of magnitude larger
than Sanger sequencing with a lower per base cost.

The Illumina technology was introduced around the same
time as 454 Pyrosequencing technology. The Illumina instru-
ments produce more than 10 times the number of reads per
run as the 454GS FLXmachines, albeit ofmuch shorter lengths
(less than 100 bp compared with 400–500 bp of 454 reads).

The advantages of WGS sequencing on Illumina platform over
16S rDNA sequencing on 454 platform are the ability to
provide information on genome assembly, species level taxon-
omy abundance, gene predication, and metabolic pathway
reconstruction.12 However, each stage of the analysis is com-
plicated by incomplete coverage, the high volume of data, the
short length of reads, and intrinsic errors caused by parallelism
sequencing.13,14 In this review, we will primarily focus on the
bioinformatics procedure to transform Illumina-generated
short reads into biologically meaningful taxonomic and func-
tional entities (►Fig. 1). Recent developed tools specific for
metagenomic data analysis and their application to human
reproductive medicine will be discussed as well (►Table 1).

Genome Assembly

Genome assembly is essential for the study of gene arrange-
ments and gene function. For assembly in a single organism,
all the DNA fragments come from the same genome.However,
this is not the case when it comes to metagenome assembly,
and several obstacles make metagenome assembly especially
challenging. For samples from an environment with low
microbial abundance, the coverage on the genome is usually
incomplete. Although longer gene sequences could be
achieved, there is still a risk of making chimeric contigs
from different operational taxonomic units (OTUs). This risk
of chimeric contigs is further complicated bygenomic repeats.

Figure 1 Flowchart of metagenomics whole genome shotgun se-
quencing data analysis.
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For the same reason, the assembly process could distort the
species abundance as well.15

Reconstructing genomes without referencing a previously
sequenced genome is called de novo assembly, which is
proven to be hard to solve computationally (NP-hard). The
traditional method used for assembly of Sanger-based se-
quences is Overlap Layout Consensus. An overlap graph isfirst
constructed with each read as a node and edge representing
the overlap identified between reads. The graph is thereafter
analyzed to determine the paths connecting reads together to
construct the genome.However, thismethod is not suitable to
be used on the assembly of short reads generated on an NGS
platform because in the worst case each read must be
comparedwith all other reads. NGSmethods usually generate
an order of magnitude more reads compared with Sanger
sequencing, which significantly increases the computational
complexity. Most of the recently developed metagenomics
assembly algorithms are based on Eulerian tour of de Bruijn
graphs. In de Bruijn graphs, reads are first decomposed into
fixed length k-mers. Nodes are represented by k-mers, with
the reads themselves being the edges connecting the nodes
(►Fig. 2). The overlaps are implicitly represented in the graph
by paths that traverse from one read to its neighbor. The
output is usually a simple path of contigs. In this way, the high
number of reads does not affect the number of nodes and
because repeats only appear once, the problem of high
redundancy in reads is also solved. Moreover, the solution
to a de Bruijn graph is an Eulerian path, and a linear-time
algorithm to solve an Eulerian path does exist.

Traditional assemblers designed for the assembly of single
organism genomes were initially applied to assemble meta-
genomes (i.e., Velvet,16 Celera,17 and SOAPdenovo18) with
limited success. Recently, various Eulerian strategy-based

assemblers have been developed specifically for the assembly
of metagenomes.19

One assembler in particular is MetaVelvet20 that was
developed based on Velvet,16 a popular assembler for single
genomes. The basic idea of MetaVelvet is to take the de Bruijn
graph constructed from sequences obtained from multiple
species as a mixture of multiple de Bruijn subgraphs, where
each subgraph represents an individual species. Themixed de
Bruijn graph is then decomposed into individual subgraphs
based on coverage difference and graph connectivity, and the
subgraphs are subsequently used for building scaffolds.

The program Meta-IDBA21 is used to address the issue of
identifying the branches in the de Bruijn graph caused by
polymorphism in similar subspecies (sp-branches) or caused
by similar genomic regions shared by different species (cr-
branches). Meta-IDBA first identifies and removes cr-
branches in the graph, which leaves connected components
corresponding to a set of subgraphs of the same species.
Finally, each component is transformed into a multiple
alignment of consensus sequences to represent the contigs
of different subspecies.

GeneStitch22 uses the prior knowledge of the species
composition and gene contents to guide the assembly pro-
cess. The idea is that the assembled contigs are similar to
given reference genes. Alternatively, the contigs could be
inferred from the tangled de Bruijn graph using a network
matching algorithm, and if no prior sequence knowledge is
available, a general dataset of genes could be used to reference
the gene sets as well. With the ever increasing number of
samples and reads, scalability is becoming important for
metagenome assembly.

Ray Meta23 is a method that was developed for scalable
distributed de novo metagenome assembly on Ray.24 Ray
Meta does not modify the de Bruijn subgraphs as MetaVelvet
and Meta-IDBA. It applies heuristics-guided graph traversals
on k-mers in parallel, which is more amenable to distributed

Table 1 Tools for metagenomics analysis mentioned in this
review

Process Tools Reference

Metagenome assembly MetaVelvet
Meta-IDBA
GeneStitch
Ray Meta
Bambus 2

20
21
22
23
25

Gene prediction MetaGene Annotator
MetaGeneMark
Orphelia

26
28
29

Taxonomic
identification

MEGAN
WebCARMA
Phymm PhymmBL
MetaPhyler
MetaPhlAn

31
33
35
36
37

Functional and
pathway annotation

BLASTX
UBLAST
HMMER
THINK-Back
HUMAnN

40
41
42
45

Data analysis pipeline MetAMOS
MG-RAST
Genboree tool kit

58
55
54

Figure 2 A sample de Bruijn graph with k ¼ 4. The edges of the graph
are unique subsequences of reads with length of k. The nodes of the
graph represent common subsequence of length of k-1. If the suffix of
one node matches with the prefix of the other node with length of k-2,
the two nodes are connected. This graph consists of short reads for the
consensus sequence “GTTTGGTTGT.”
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computing. All of these methods are claimed to yield longer
contigs and more representative taxonomic representations
on simulated and real data compared with assemblers de-
signed for single genome assembly.

After the reads are assembled into contigs, the relative
positions of the contigs along a genome are determined by
scaffolding, a process that depends on mate-pair information. If
twoends of themate pair are in differing contigs, the two contigs
are inferred to be adjacent to each other on the genome. Most of
the assemblers contain module of scaffolding. This scaffolding
algorithm starts with the most reliable information and gradu-
ally adds more data as long as the new information agrees with
the constructed scaffold. Tools, such as Bambus 2,25 have been
developed formetagenomescaffolding. Bambus2 canbe applied
to virtually all existing sequencing technologies and the output
from popular assemblers.

Gene Prediction

A fundamental purpose of gene assembly is to enable gene
predictions using scaffolds, such that genes can be classified
into correct functions. There are two classically described
methods for gene prediction: (1) train model parameters on
known annotations to predict unknown annotation or (2) to
train models based on homology search, which aligns se-
quences to gene database to find homologous sequences.
However, it is not possible to apply these traditional methods
directly to metagenomics data. The incomplete open reading
frame (ORF) acquired frommetagenome assembly often lacks
start or stop codons; therefore, ab-initio programs do not
work in this scenario. In addition, there is not yet a sufficient
metagenomics sequence database to build a statistical model
to distinguish coding from noncoding ORFs. The obvious
drawback for these homology-based methods is that it only
provides information for known genes.

Recent tools havebeen developed to address this core issue
of metagenome gene prediction. MetaGene Annotator (MGA)
26 is upgraded from MetaGene.27 First, all ORFs in MGA are
extracted and scored on a model estimated from annotated
genomes. Then, an optimal combination of ORFs is calculated
using the scores of orientations and distances of neighboring
ORFs. MGA also uses the logistic regression models of the GC
content and di-codon frequencies from MetaGene. In addi-
tion, it has an adaptable ribosomal binding site model based
on complementary sequences of 16S ribosomal RNA, which
helps MGA to precisely predict translation start sites.

MetaGeneMark28 uses a heuristic approach originally
developed for finding genes within small fragments of anon-
ymous prokaryotic genomes and/or highly inhomogeneous
genomes. The training dataset consists of 357 bacteria and
Archaea species. Linear regression is applied to the relevant
information in the training set, such as the relationship
between positional nucleotide frequencies and the global
nucleotide frequencies and the relationship between the
amino acid frequencies and the global GC content. The initial
frequency values of the occurrence of 61 codons are calculat-
ed based on the above information and subsequently modi-
fied by the frequency of each amino acid determined by the

GC content. Finally, the Markov model of a protein coding
region is constructed based on the usage of all 61 codons.

Orphelia is the third recently developed tool for gene
prediction,29 and is unique in that it adopts a neural net-
work-based method. The neural network is trained on ran-
domly excised DNA fragments from the genomes that were
used for discriminate training. The artificial neural network
combines sequence features, such as monocodon usage,
dicodon usage, and translational initiation sites, with ORF
length and GC content to compute a posterior probability of
an ORF to encode a protein.

One recent study has benchmarked these three gene pre-
diction methods and demonstrated variable performance at
different read lengths and fragment types.26 As might be
logically predicted, the authors found that longer reads result
in better gene prediction. In addition, while MGA had the best
sensitivity, it was theworst in specificity formost read lengths.
MetaGeneMark had average sensitivity but much better spec-
ificity thanMGA, andOrphelia had the lowest annotation error
for longer read lengths. Therefore, the combination of several
methods, screening intergenic regions for overlooked genes,
and using dedicated frameshift detectors may result in better
prediction accuracy.26 Decisions as to which will perform
optimally will also be dependent upon the number of reads
per sample and the ratio of bacterial to human reads. This is
similarly related to the human body niche of sample origin.

Taxonomy Identification

One important question to answer in metagenomics analysis
is “What microbes are present?” which leads to the identifi-
cation of taxonomy distribution in metagenomic samples.
16S rDNA-based surveys produce on average 10,000 sequen-
ces that range from 400 to700 bp in length per sample. Rapid
taxonomic classifiers, such as the Ribosomal Database Project
(RDP) classifier,30 use these sequences to generate taxonomic
distribution down to the genus level. Despite its popularity,
16S rDNA-basedmethods suffer from thebiased estimation of
microbial diversity due to the variability in copy number of
the 16S gene and the PCR.

There are two key pathways enabling taxonomic identifica-
tion using WGS reads. The first employs homology search
against a reference gene database. For example, MEGAN31 first
performs a BLASTX search against the NCBI-NR database. Taxo-
nomic analysis is then conducted by placing each read onto a
node of the NCBI taxonomy according to the lowest common
ancestor of the top hits, and the NCBI taxonomy is based on a
hierarchically structured classification of all species represented
in the NCBI. Instead, CARMA,32 and the refined version Web-
CARMA,33 searches all Pfam domain and protein families as
phylogenetic markers to identify the source organisms of unas-
sembled reads using hidden Markov models. Then a phyloge-
netic tree is reconstructed for eachmatchingPfamfamilyand the
corresponding query reads. Finally, the reads are classified into a
higher-order taxonomy depending on their phylogenetic rela-
tionships to familymemberswith known taxonomic affiliations.
It isworthnoting thatonlya small portionof readshavematches
by BLAST against the microbial database.
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An alternative strategy to homology-based approaches is
to use machine learning and statistical methods to classify
reads based on the composition of the DNA base signatures.
The interpolatedMarkovmodels (IMMs) have been employed
with success in bacterial gene classification using the GLIM-
MER system.34 Compared with other methods, IMMs utilize
information from sequences of different lengths and integrate
the results. The program Phymm35 demonstrates the use of
IMMs in classification of metagenomic reads. In Phymm, a
classifier is trained on a large amount of curated genomes.
This classifier constructs probability distributions that repre-
sent the observed patterns of nucleotides characterizing each
chromosome or plasmid. PhymmBL35 demonstrates that the
combination of machine learning and BLAST produces higher
accuracy than either method alone.

Given the complexity of metagenomic assemblies, the
taxonomic classification can also be achieved by directly using
reads before assembly. Large-scale studies, for example, the
HMP,1–3 likely includes hundreds of samples. In these large-
scale studies, the computational efficiency of BLAST becomes
the bottleneck for the analysis process if all the reads are used
for classificationwithout assembly. Therefore, reference mark-
er gene sets are constructed to reduce the size of the database.
MetaPhyler36 is one of these methods, which relies on 31
phylogeneticmarker genes derived fromexisting genomes and
the NCBI-NR database. Furthermore, instead of using a univer-
sal classification threshold for all genes at all taxonomic levels,
MetaPhyler uses different thresholds for classifiers to the
reference gene and to the taxonomic level, which results in
much faster analysis. MetaPhlAn37 first identifiedmore than 2
million potential markers using 2,887 genomes from Integrat-
ed Microbial Genomes (IMG) system,38 which was further
refined to a catalog of 1,221 species with 231 markers per
species and > 115,000 markers at higher taxonomic levels.
The relative abundance of each taxonomic level is made by the
alignment of reads to clade-specific marker sequences in this
catalog. Microbial clade abundance is then estimated by
normalizing read-based counts with the average genome
size of each clade. MetaPhlAn has been applied to the analysis
of vaginal microbiome (posterior fornix) of asymptotic women
enrolled in the HMP. As Lactobacillus is the dominant genus in
the vaginal microbiome, it is important to further classify this
genus down to the species level to reflect the detailed micro-
bial profile. Using this strategy, all five of the signature
Lactobacillus species could be identified byMetaPhlAn. Despite
the technical differencebetween 16S sequencing andWGS, the
estimated relative abundance is quite similar.

Functional and Pathway Annotation

After discovering themicrobial consistency, the next question
to be answered fromWGS data are “What are these microbes
able to do?”. There are two issues involved in this process. The
first issue is to assign functional annotation to the assembled
ORF or to the reads directly. The other issue is to place the
genes in the context of biological pathways, especially meta-
bolic pathways.39 Themost straightforwardway for function-
al prediction is by aligning query sequences to an existing

reference protein database, but then one must determine
which database to use. The size and contents of the databases
are different, which will in turn affect the efficiency and
accuracy. If one is interested in annotating asmany sequences
as possible, the NCBI RefSeq database would be a good choice
because it has the most comprehensive collections of ge-
nomes. For this purpose, various versions of BLAST, including
BLASTX and BLASTP, could be applied. However, this ap-
proach suffers from the long computation time required to
search through all the homologs in reference to the database
for each sequence in the dataset. To speed up the process,
BLAST can be done in parallel, like the MBLASTX (Multi-
coreWare, St. Louis, MO) used by the HMP. Tools, such as
UBLAST,40 have been developed for high-throughput se-
quence classifications that are often an order of magnitude
faster than BLAST in real applications, but these applications
lose sensitivity. The raw quantification obtained from align-
ments needs to be normalized by the size of the reference
coding sequences. The results from a homology search are
often affected by sequence conservation due to the functional
homology in different organisms. When sequences are
mapped to structurally or functionally conserved region,
they can easily be assigned to different species if only a
similarity score is used.

A possible solution to misclassification is to adopt the
more sensitive profile-based search method. This method
uses databases with profiles generated from alignments of
protein families that share similar functions, such as COG,
Pfam, or TIGRfam. Hidden Markov–based HMMER41 was
designed to perform a fast search against profiles generated
from multiple sequence alignments. Although more sensitiv-
ity is achieved this way, fewer sequences get annotated. For
partial proteins generated on short contigs or unassembled
sequences, a repository with patterns or motifs (i.e., PROSITE)
might be used for a functionality search. If gene prediction is
successful, genomic neighborhood, phylogenetic profiling,
and gene coexpression analysis may provide useful informa-
tion for functional prediction as well.

Pathway-based analysis has been developed to interpret
the results from microarray experiments before applying the
results tometagenomics data. Pathway here indicates a series
connected sets of genes with nodes representing genes and
lines representing their relationships (►Fig. 3). The signifi-
cance of these pathways is decided by functional enrichment
statistics (Fisher exact test) or by scoring based on the pool of
genes in the sample (gene set enrichment analysis [GSEA]).
One major drawback of these count-based methods is dis-
regarding the topology of the pathways. The order of the
genes in the pathway could help with the interpretations of
the results. Fortunately, more complex methods have been
developed to address this problem. THINK-Back,42 stands for
Knowledge-based Interpretation of High Throughput data, is
a suite of tools trying to generate biologically meaningful
hypothesis by using knowledge in pathway databases, such as
KEGG, PANTHER, Reactome, and Biocarta. One method in
THINK-Back adjusts the score generated by GSEA43 by incor-
porating the appearance frequency of the genes in a KEGG
database.44 Another method takes into account the topology

Seminars in Reproductive Medicine Vol. 32 No. 1/2014

Use of Whole Genome Shotgun Metagenomics Ma et al. 9

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



of the pathways to calculate a density score, which is subse-
quently used for adjusting GSEA scores.42 The pathway
reconstruction using WGS data is essentially using the num-
ber of gene copies to indicate the activity of pathway, which is
quite different from RNA-based microarray and RNA-seq
analysis. But the idea of integrating topology pathway infor-
mation into pathway analysis could still be applied to meta-
genomics pathway reconstruction.

As described above, most of the ORFs assembled from
metagenomics reads are partial and likely contain errors
caused by frame shifts; therefore, another way to perform
functional annotation is to skip the gene calling altogether
and use the protein coding sequences identified from the
reads. In HUMAnN (the HMP Unified Metabolic Analysis
Network),45 the reconstruction of a network is accomplished
bymapping the protein coding genes onto reference pathway
collections, such as eggnog and KEGG orthology groups,
based on their homology to the reference genes previously
characterized. MinPath46 adopts an integer programming
algorithm to reconstruct “minimal pathway,” which is de-

fined as a list of functions annotated for a set of genes in a
minimal pathway that includes all the gene functions. This
approach avoids the problem of identification of spurious
pathways and overestimation of microbial abundance. After
data normalization and smoothing, pathway coverage (rela-
tive confidence of each pathway being present in the sample)
and pathway abundance (relative “copy number” of each
pathway in the sample) are generated and organized into a
matrix-like format for postprocessing.

Comparative Metagenomics

Despite all the challenges withWGS as covered in this review,
important environmental and biological questions have been
investigated through comparisons of taxonomic abundance
and metabolic pathway activity. Because of the dynamic
nature of the microbiome, there is large variation in micro-
biome profiles even from samples obtained from a similar
environment. Therefore, a higher number of samples need to
be collected to get an accurate measure of the microbiome.

Figure 3 Mock KEGG pathway map shows the concept of pathway analysis. The figure on the top contains all the KEGG pathways involved in
metabolic process. Blue and red colors indicate the enrichment of genes in either case or control group. Two examples of KEGG pathways are
shown with nodes representing proteins or molecules and lines representing their biological relationship. The gradient of red indicates the
average relative ratio of gene abundance between case and control samples.
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Ergo, in addition to a large amount of sequences, there are
also a large number of samples withmetadata. The taxonomy
profile is often organized into a matrix with rows represent-
ing taxonomy (either relative abundance for each taxonomic
level or OTU counts) and columns representing each sample.
Depending on the complexity of the microbiome, there could
be thousands of rows and columns in the matrix.

Matrix expansion yields the issue of data dimension. Di-
mensionality reduction becomes important to decrease the
computational cost. If the taxa table is large, it will behelpful to
first filter the table to remove singletons or OTUs/species only
appearing in a small number of samples. As singletons or rare
species may be generated by sequencing error, they are not
helpful for the purpose of comparative metagenomics. Princi-
pal coordinates analysis (PCoA) is the most popular technique
to perform dimensionality reduction. PCoA takes the results of
β diversity comparisons that are generated using phylogenetic
(UniFrac47) or nonphylogenetic (such as Canberra) distance on
taxon table and produces a newmatrixwith fewer dimensions
by solving eigenvalues. The direction of each axis is chosen to
maximize the variation in the data. Normally, the first three
coordinates are chosen to visualize the samples in three
dimensions. The points that cluster together indicate that
these samples have similar taxonomy profiles. An alternative,
nonparametric rank-based method is to use nonmetric multi-
dimensional scaling, which could avoid the arch effect caused
by the sparsity of the matrix.48

If clusters are observed from a 3DPCoAplot,most biologists
will be interested to know which taxa cause the differences in
the microbial community depending on the metadata. Thus,
some machine learning techniques could be used to answer
this question. Not every statistical test should be used for every
analysis, but the combination of several analyses canproduce a
more accurate result. The Random Forest generates a large
ensemble of decision trees from a random subset of the data
and a random selection of the variable. The resulting ensemble
of trees is then usedwith amajority-voting approach to decide
which sample belongs to which group. One advantage of the
Random Forest is that there is no need for cross validation to
get an unbiased estimate of the test set error. An out-of-bag
error estimate is generated internally by a bootstrap sample
from the original data. This is very usefulwhen the sample size
is small. Boruta is an all-relevant feature selection wrapper
algorithm around Random Forest. It finds important features
by iterative learning of the Random Forest classifier. In the end,
a list of features confirmed to differentiate groups is generat-
ed.4 LEfSe (linear discriminate analysis effect size)49 is a
recently developed tool to identify genomic features (genes,
pathways, or taxa) specific to each group. LEfSe first use
Kruskal–Wallis sum-rank test and Wilcoxon rank-sum test to
identify the significant differential abundance with respect to
the class of interest. Then linear discriminant analysis is
applied to estimate the effect size of each differentially abun-
dant feature. LEfSe also provides bar plots and cladogram plots
to represent the discovered biomarkers.

Random Forest and linear discriminate analysis are both
supervised machine learningmethods, whichmeans that the
samples have been assigned to a group before the learning

task. Unsupervised learning has been applied to metagenom-
ics data as well to discover the hidden structures of micro-
biome. One effort is the introduction of the “enterotype” by
Arumugam et al50 using the human gut samples from the
MetaHIT consortium.50 Enterotypes are generated by per-
forming clustering analysis on the gut microbial communi-
ties. The difference among three enterotypes is driven by key
bacterial genera and not related with age, gender, or body
weight. There is also a report about the existence of enter-
otype-like clusters in the vaginal microbiome community
based on the abundance of bacterial species, mainly species in
the Lactobacillus genus.51 However, recent research, includ-
ing our own, indicates that one should take precautions when
performing enterotyping.52,53 Despite various ways to gener-
ate a taxa table, clustering is a statistical approach, whose
performance is affected by many factors. One recent study
tried to identify the influence of various factors on enter-
otyping, including clustering methodology, distance metrics,
OTU-picking methods, sequencing depth, and sequencing
methods.52 Using the HMP data, instead of discrete enter-
otypes, a smooth gradient distribution of Bacteroides abun-
dances was observed in gut microbiome. For the vaginal
microbiome, depending on the taxonomy level, distance
metrics and scoring methods, two to five clusters are found
using the HMP vaginal data. These results suggest that
distance metrics and the clustering methods have the largest
effect on enterotyping. At least one absolute scoring method
combined with two to three distance metrics should be used
to verify the existence of enterotypes.52

WGS Data Analysis Pipelines

As described above, the metagenomics data analysis includes
assembly, gene predication and annotation, taxonomic classifi-
cation, and so on, but each of these tasks is performed by specific
software that requires installation, configuration, and integra-
tion. This is adaunting taskeven for bioinformatics experts.Most
of the research groups construct analysis pipeline by picking
tools for each task based on their own experience. For a
laboratory without bioinformatics support, it may be difficult
to perform meaningful analysis with a large amount of data.
With this in mind, we have recently worked to produce single-
site, publicly available tool sets.54 Specifically designed for 16S
analysis, our Genboree Microbiome tool set was deployed using
the web-based Genboree workbench, which has an easy-to-use
GUI interface. Users upload the sequencing file and metadata
and choose the desired task analysis by clicking. Similar web
tools for WGS data analysis have been developed too. MG-
RAST55 is a comprehensive web tool for both phylogenetic
and functional summaries. MG-RAST is based on a modified
version of the RAST (rapid annotation based on subsystem
technology) server56 upon the SEED framework, which provides
automated sequence assignment by comparison with both
protein andnucleotidedatabases.Users canupload thesequence
file to the server and keep data private or public.

Like QIIME for 16S-based analysis, a similar standardized
framework for WGS data analysis has been created. Smash-
Community57 is one of the early pipelines designed for 454
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and Sanger datawith limited capability for follow-up analysis.
MetAMOS58 is a modular and customizable framework for
metagenomic assembly and analysis, which is also user
friendly. The construction is built upon the AMOS open-
source genome assembly framework. A collection of publicly
available tools is tied together by the lightweight workflow
system Ruffus, including Meta-IDBA,21 MetaVelvet,20 SOAP-
denovo,18 Bowtie,59 MetaGeneMark,28 MetaPhyler,36 and
more. The modular design enables users to check the output
for each step and facilitates the integration of data generated
by other tools or in different formats.

WGS Application in Human Reproductive
Medicine

Despite these advances inWGSanalysis, theprevailing technique
used formicrobiome research in the area of human reproductive
medicine is still 16S rDNA sequencing. However, WGS techni-
ques have been adopted in several recent studies in addition to
the 16S sequencing. A subset of samples from HMP was sub-
jected to Illumina sequencing, which included samples from
posterior fornix.2 The result from this study demonstrated that
although each body site is characterized by signature clade,most
of the metabolic pathways are evenly distributed and prevalent
across both individuals andbodyhabitats. However, this analysis
revealed that the pathways related with oligosaccharide and
polyol transport system are more active in posterior fornix
samples. One recent studyondynamic changesof gutmicrobiota
from first to third trimesters also used Illumina HiSEq. 2000 to
examine the enrichment of specific metabolic pathways.60 The
analysis of data did not find difference in the mean relative
abundance of gene categories or metabolic pathways between
trimesters. Therefore, the shifts of gut microbiome during
pregnancy may not be associated with metabolic changes.
However, a network analysis of correlations between COG
(cluster of orthologous groups) abundances across samples
indicated the loss of network modularity in the third trimester,
which indicates a reduction inphylogenetic diversity and amore
uneven distribution of taxa.60 The results of this study are in
agreement with studies of phylogenic diversity from our labo-
ratory.4 As WGS techniques continue to improve and become
more user friendly, this will be a powerful tool in future studies
with a focus on human reproduction. For instance, in studying
preterm birth, it can be challenging to detect bacteria in the
amniotic fluid of patients.61 Yet, recent studies have detected
bacteria deep within human fetal membranes.62 In addition, an
independent study found that bacteria were harbored in the
basal plate of the placenta.63 Remarkably, there was not statisti-
cal significance in the presence of bacteria between preterm and
term patients.63 Thus, while previous sequencing techniques
have failed to detect bacteria in the placenta, the advent on NGS
techniquesmay help to advance our understanding of the role of
the microbiome in promoting healthy, term pregnancies.

Conclusion

The rapid advancement of sequencing technology has
brought both promise and challenges to the metagenomics

field. We can now explore unknown environments as com-
munity genomic, ecologic niches in previously unparalleled
and dynamic fashions. However, the downstream analysis
currently lags behind the sequencing technology. Compared
with 16S-based metagenomic sequencing, WGS generates
exponentially more sequences that necessitate large storage
requirements, and produce large numbers of unknown spe-
cies that demand more computational resources. In this
review, we have introduced several recently developed tools
dedicated to metagenomics assembly, gene predication, and
pathway reconstruction. There is still a high demand formore
efficient and more sensitive tools to perform standardized
analysis. In addition toWGS, RNA-basedmetatranscriptomics
is also under development to provide more details on the
dynamic changes in the community, which may alleviate the
limitation caused by DNA-based methods. Metabolomics
attempts to measure the complete set of molecules in the
community, which could provide important information on
the study of host–microbe interactions. In our era of “omics-
based discovery science,” physician scientists are increasingly
called upon to work side by side with computational scien-
tists. It is our hope that this review will provide our fellow
microbiome-minded reproductive and perinatal biologists
with a working knowledge of the current state of the science.
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