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Introduction

Metal-free organocatalysis employing N-heterocyclic
carbenes (NHCs) has attracted great interest because of its
use in the construction of intricate molecular architectures
from simple starting materials under mild reaction condi-
tions.1 The catalytic pathway of NHCs mimics that of thi-
amine-dependent enzymatic processes and passes through
discrete reactive species, such as acyl anions and enolate
or homoenolate equivalents.2 This enables the selective
generation of a set of versatile electrophilic (acyl azoli-
ums) and nucleophilic (enolates, homoenolates) interme-
diates and makes NHCs efficient catalysts in such various
reactions as acylation, cycloaddition, β-borylation, and
elimination. 

N-Mesityl substituted imidazolium (cat. A) and triazolium
(cat. B) salts were introduced by Bode and co-workers as
stable NHC precursors.3 The imidazolium derivative fa-
vors the homoenolate pathway, whereas the triazolium
precursor promotes almost all NHC-catalyzed transfor-

mations, except for benzoin and Stetter reactions. Chiral
pre-catalysts like C and its enantiomer are also commer-
cially available.4 

It should be noted that the N-substituent is of crucial im-
portance; for example, an N-phenyl substituents might not
provide any product, while the Bode (N-mesityl) or Rovis
(N-pentafluorophenyl)5 catalysts are highly catalytically
active. 

Figure 1  N-Mesityl-substituted imidazolium (cat. A) and triazolium
(cat. B and C) carbene precursors. Chiral pre-catalyst C is commerci-
ally available (Mes = 1,3,5-trimethylphenyl). 
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(A) Bode catalysts were first found to be efficient for the esterifica-
tion of aldehydes via the activated carboxylates generated from α,β-
epoxyaldehydes, enals, and cyclopropanes. You et al. used a similar
methodology for the ring expansion of formylcyclopropanes to af-
ford 3,4-dihydro-α-pyrones.6 Although in situ generated acyl azoli-
ums did not react directly with amines, amidation was possible using
a co-catalyst with additives such as imidazole, triazole, hydroxamic
acid, HOBt, HOAt, or pentafluorophenol.7a This approach was suc-
cessfully in the catalytic kinetic resolution of cyclic amines using the
chiral hydroxamic acid 1 or 2 as co-catalyst.7b,c Recent development
includes the use of a polymer-supported histidine-bound NHC pre-
cursor in which the histidine moiety acts as co-catalyst.7d 
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(B) Ester enolate equivalents generated from α-halo- and α,β-unsat-
urated aldehydes underwent enantioselective oxa- and aza-Diels–
Alder reactions.1a Strikingly, bench-stable bisulfite adducts of
α-halo aldehydes could be directly used for this transformation.
Kobayashi et al. reported the synthesis of 1β-methylcarbapenem anti-
biotic intermediates using vinylogous amides as dienes.8

(C) Although imidazolium-derived catalysts are generally superior
to triazolium precursors in γ-lactonization and γ-lactamization reac-
tions, triazolium salts also efficiently promote the annulation of
highly reactive electrophiles via the homoenolate pathway.9 In 2013,
Chi et al. developed a selective β-protonation of homoenolate equiv-
alents.10 This enabled the synthesis of previously inaccessible eno-
late products by the reaction of enals with chalcones.

(D) In course of their work on kojic acids, Bode and co-workers dis-
covered a new enantioselective azolium-catalyzed annulation of
ynals via a Coates–Claisen rearrangement. The reaction pathway
was different from enolate, homoenolates, and acyl anion activa-
tion.11a,b Further, the substrate scope of the reaction was extended to
enals. Mechanistical insights into this transformation led to the
NHC-catalyzed aza-Claisen rearrangement of enals with vinylogous
amides.11c 

(E) The NHC-promoted addition of enals to imine electrophiles rep-
resents a particular reactivity. Ketimines derived from saccharine
were found to be excellent electrophiles in annulation reactions pro-
ceeding via homoenolate and acyl azolium pathways.12 In the latter
case, the pre-catalyst C ensured the first annulation of α- and β,β′-
substituted enals with a high enantio- and diastereoselectivity. 

(F) Recently, Alexakis and co-workers reported the stereoselective
annulation between α-cyano-1,4-diketones and ynals.13 Starting
from achiral material and in the presence of achiral pre-catalyst B,
this transformation furnished a functionalized bicyclic scaffold pos-
sessing three contiguous stereogenic centers with a good diastereo-
selectivity.
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