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Introduction

Diethylzinc (ZnEt2, bp = 118 °C at 760 mmHg) is an in-
expensive and commonly used diorganozinc reagent.1

Due to its high pyrophoric nature, diethylzinc is often
commercialized as a solution in organic solvent (hexane,
toluene, or heptane). 

ZnEt2 was first synthesized by Frankland in 1849 by heat-
ing ethyl iodide with zinc metal.2 To facilitate purifica-

tion, other methods have been developed, such as the
transmetalation of a zinc halide with an organometallic re-
agent.3 The use of this reagent has gained attention thanks
to its application in asymmetric synthesis.

Diethylzinc is a versatile nucleophile that is suited for
metal catalysis due to the highly covalent character of the
carbon–zinc bond and the low Lewis acidity of zinc(II).
Moreover, the empty low-lying p-orbitals allow facile
transmetalation reactions.

Abstracts

(A) 1,2-Addition: Seebach and co-workers reported the 1,2-addition
of diethylzinc to aliphatic and aromatic aldehydes in the presence of
Ti(Oi-Pr)4 and TADDOL derivatives as ligands, which led to enan-
tiopure alcohols in good yields.4 Walsh and co-workers described
also the synthesis of tertiary alcohols by the asymmetric addition of
ZnEt2 to ketones catalyzed by a titanium catalyst with a chiral di-
amine ligand.5

(B) 1,4-Addition to Cyclic Enones: Alexakis and co-workers report-
ed an asymmetric copper-catalyzed 1,4-addition of diethylzinc to
cyclic enones using a phosphoramidite ligand, followed by C-eno-
late trapping resulting in the synthesis of α,β-disubstituted ketones
with a high degree of stereoselectivity.6

(C) 1,4-Addition to Reactive Acceptors: Carreira and co-workers de-
veloped the copper-catalyzed highly stereoselective conjugate addi-
tion of diethylzinc to Meldrum’s acid derived acceptors with
phosphoramidite ligands.7

(D) Addition to α-Chloro Aldimines: Walsh and co-workers de-
scribed a highly diastereoselective synthesis of α-chloro amine via a
nucleophilic addition to α-chiral imine derivatives that proceeds
through an unusual chelation transition state instead of a Cornforth–
Evans model.8
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(E) Addition to N-Acylpyridinium Salts: Feringa and Minnaard
developed a catalytic enantioselective addition of diethylzinc to
N-acylpyridinium salts with good yields and excellent enantioselec-
tivities. This method was applied to the synthesis of natural alka-
loids.9 

(F) Marshall Homopropargylation: Taking advantage of zinc(II)’s
ability to perform transmetalation, allenyl zinc compounds were
synthesized from diethylzinc. Then, addition to an aldehyde gave the
desired anti homopropargylic alcohol adducts with high de.
Marshall and co-workers synthesized various enantioenriched ho-
mopropargylic alcohols and applied this method to the synthesis of
superstolide A.10

(G) Alkyl Radical Addition: Stereoselective synthesis of diethyl fu-
marate derivatives was accomplished under mild conditions via a di-
rect anti carbozincation of diethyl acetylenedicarboxylate through
diethylzinc-mediated alkyl radical addition.11

(H) Phenyl Transfer to Aldehydes: Bolm and co-workers have
shown that in the synthesis of diarylmethanol compounds the use of
diethylzinc can improve the enantioselectivity of the reaction.12

(I) Simmons–Smith Reaction: ZnEt2 was also used in asymmetric
Simmons-Smith reactions.13 This reaction was employed in many
syntheses of natural products: for instance in 2008, Willis and co-
workers described the synthesis of (−)-clavosolide D: 14 treatment of
the allylic alcohol with Et2Zn and CH2ICl led to the formation of a
cyclopropane with excellent yield and diastereoselectivity.

(J) Enantioselective Allylic Substitution: In 2009, the group of
Hoveyda reported that chiral N-heterocyclic carbene complexes are
efficient catalysts in the copper-free enantioselective allylic alkyla-
tion using diethylzinc and allylic phosphates. This reaction led to en-
antioenriched allylic moieties with quarternary centers.15
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