A minimally invasive technique utilizing percutaneous and endoscopic rendezvous for successful treatment of a proximal bile leak following partial hepatectomy

A 43-year-old woman presented with a grade B bile leak after right hepatectomy for metastatic colon cancer. She developed subhepatic bilomas which were managed with percutaneous drains. Endoscopic retrograde cholangiography (ERC) demonstrated a high-grade bile leak secondary to a large defect in the left hepatic duct, possibly due to complete dehiscence of the staple line of the right hepatic bile duct. Despite placement of a fully covered self-expandable metallic biliary stent (SEMS), the bile leak persisted. Percutaneous transhepatic biliary drainage (PTBD) was attempted. The left hepatic duct was accessed in an antegrade fashion; however, the guidewire repeatedly entered the subhepatic space and could not be directed into the common bile duct. Simultaneous ERC and PTBD were performed. The leak (Fig. 1) and discontinuity between the left hepatic duct and common bile duct was redemonstrated at ERC. A guidewire was advanced in a retrograde manner to the area just distal to the leak (Fig. 2). A 15-mm snare (Amplatz GooseNeck, Covidien, Plymouth, Minnesota, USA) was advanced in an antegrade manner across the left hepatic duct defect to capture the wire (Fig. 3) and pulled externally to secure biliary access. A percutaneous biliary drainage catheter was directed over the guidewire, through the SEMS, into the distal duodenum using endoscopic guidewire traction (Fig. 4). The drain was customized with additional side holes which remained within the intrahepatic biliary tree but not in the region of the ductal defect (Fig. 5). At 6-month follow-up, the subhepatic collections had resolved on imaging.

Bile leaks occur in up to 10–12% of patients following hepatic surgery, and are a significant cause of postsurgical morbidity, prolonged hospital stay, and mortality [2]. Indications for resection of colorectal cancer liver metastasis have expanded in recent times, leading to larger and more complex resections [3]. Preoperative bevacizumab and surgical technique are independent predictors of bile leaks [2]. Establishing continuity between the biliary tree distal and proximal to the defect is crucial for successful treatment [4]. We describe successful establishment of biliary continuity using an ERC–PTBD rendezvous procedure (after failure of standard endoscopic techniques) to treat a large defect which obviated the need for repeat laparotomy.
Competing interests: Payal Saxena has received consulting fees from Boston Scientific and research support from Cook Medical.
Mouen A. Khashab is a consultant for Boston Scientific and Olympus America and has received research support from Cook Medical.
Vikesh K. Singh is a consultant for Abbvie, Santarus, D-Pharm, and Boston Scientific. All other authors have no relevant conflicts of interest to disclose.

Payal Saxena1, Adam Jeffers2, Sally E. Mitchell2, Timothy M. Pawlik3, Joanna K. Law1, Vivek Kumbhari1, Mouen A. Khashab1, Vikesh K. Singh1
1 Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
2 Division of Interventional Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
3 Department of Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA

References

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1365376
Endoscopy 2014; 46: E212–E213
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

Corresponding author
Vikesh K. Singh, MD, MSc
Johns Hopkins Hospital
Division of Gastroenterology
1830 E. Monument Street, Room 428
Baltimore
MD 21205
USA
Fax: +1-410-614-7631
vsingh1@jhmi.edu

Fig. 5 The percutaneously placed 12-Fr biliary drainage catheter is advanced through the common bile duct while ensuring that side holes are not present in the region of duct discontinuity (in between yellow asterisks).

Saxena Payal et al. A minimally invasive technique utilizing percutaneous and endoscopic rendezvous for successful treatment... Endoscopy 2014; 46: E212–E213