Novel use of a self-expanding metal stent for an esophageal stricture after radiofrequency ablation treatment of Barrett's esophagus

Radiofrequency ablation (RFA) is effective and safe in the treatment of Barrett's esophagus [1]. The incidence of esophageal stricture after RFA treatment is reported to be up to 8% [2]. Stricture rates may be increased with RFA of long-segment Barrett's esophagus. Strictures are treated endoscopically with balloons or Savary dilators; however, there is a risk of perforation with these treatments. We report on the successful treatment of a patient with a stricture following RFA using a self-expanding metal stent (SEMS).

A 71-year old man with long-segment Barrett's esophagus (C7M7) and low-grade dysplasia underwent circumferential RFA. A month later he reported dysphagia and odynophagia, and endoscopy revealed a tight stricture with circumferential ulceration at the proximal end of the RFA-treated area of Barrett's epithelium (Fig. 1 a).

A gastroscope with a 5.9-mm diameter was advanced to the proximal end of the stricture; however, the distal end of the stricture could not be traversed. A gastroscope with an 8.8-mm diameter was therefore inserted and a 9–12-mm extraction balloon (Extractor Pro RX; Boston Scientific, Natick, Massachusetts, USA) was introduced. Injection of contrast revealed a 4–5 cm long stricture in the mid-esophagus. A stent introducer was passed over a 450-cm, 0.035-inch guidewire (Dreamwire; Boston Scientific), which had been passed through the stricture under fluoroscopic guidance. A fully covered metal esophageal stent (23 × 105 mm, Fig. 4) was successfully deployed in the esophagus over the guidewire (Fig. 2).

Endoscopy revealed a well-healed fibrotic stricture 2 months later (Fig. 3). Endoscopy 6 months later showed a well-healed fibrotic stricture (Fig. 5) with minimal evidence of recurrent Barrett's epithelium.
WallFlex; Boston Scientific) was deployed (Fig. 1b). A further attempt to pass the 5.9 mm gastroscope through the stricture was unsuccessful. The extraction balloon was reintroduced and injection of contrast showed a waist in the mid-portion of the stent, but with free flow of contrast into the stomach (Fig. 2).

The stent was removed 2 months later (Fig. 3 and Fig. 4) and after 6 months, the patient had no symptoms of dysphagia and was found to have a well-healed fibrotic stricture on endoscopy (Fig. 5). To our knowledge, this is the first case of an esophageal stricture occurring after RFA that was successfully treated by placement of a fully covered removable metal stent. Use of a self-expandable metal stent has also been reported for a stricture occurring after photodynamic therapy for Barrett’s esophagus [3]. Treatment of tight strictures with metal stents may be a cost-effective treatment as it avoids the need for repeated dilations and the possible subsequent complications [4].

Endoscopy_UCTN_Code_CPL_1AH_2AJ

Competing interests: None

Traci Murakami, Bhaskar Banerjee, Nuri Ozden
Division of Gastroenterology, Hepatology and Nutrition, University of Arizona Medical Center, Tucson, Arizona, USA

References
3 Cheon YK. Metal stenting to resolve post-photodynamic therapy stricture in early esophageal cancer. World J Gastroenterol 2011; 17: 1379–1382

Corresponding authors
Nuri Ozden, MD
1501 N. Campbell Avenue
PO Box 245028
Tucson
AZ 85721
USA
Fax: +1-520-874-7133
nozden1@gmail.com
Traci Murakami, MD
1501 N. Campbell Avenue
PO Box 245028
Tucson
AZ 85721
USA
traci.murakami@gmail.com

Bibliography
DOI http://dx.doi.org/10.1055/s-0034-1365428
Endoscopy 2014; 46: E269–E270
© Georg Thieme Verlag KG
Stuttgart · New York
ISSN 0013-726X

© 2014 by Thieme Medical Publishers. Inc., 333 Seventh Avenue, New York, NY 10001, USA. All rights reserved. This material may not be used in any manner not authorized by Thieme in writing. For information on how to obtain permission, contact the Permissions Coordinator, 333 Seventh Avenue, New York, NY 10001, USA, e-mail: permissions@thieme.com.