Horm Metab Res 2014; 46(03): 181-186
DOI: 10.1055/s-0034-1367043
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Valproic Acid Downregulates NF-κB p50 Activity and IRAK-1 in a Progressive Thyroid Carcinoma Cell Line

S. Schwertheim
1   Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
,
K. Worm
1   Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
,
K. W. Schmid*
1   Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
,
S-Y. Sheu-Grabellus
1   Institute of Pathology and Neuropathology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
› Author Affiliations
Further Information

Publication History

received 07 August 2013

accepted 09 January 2014

Publication Date:
13 February 2014 (online)

Abstract

Histone deacetylase inhibitor (HDACI) valproic acid (VPA) is a promising drug, currently in clinical phase 2, for the therapy of advanced/poorly differentiated thyroid cancer. The nuclear factor-κB (NF-κB) pathway is constitutively activated in most tumors, including thyroid carcinomas; this often contributes to aggressive tumor growth and therapeutic resistance. We hypothesized that VPA could be useful to decrease NF-κB activity in human thyroid cancer cells. To clarify this, we treated the highly progressive thyroid cancer cell line BHT-101 with VPA (1.0–3.0mM) for 48h. Real-time polymerase chain reaction (PCR) and Western blot were used to measure expression of NF-κB-regulatory genes and proteins. NF-κB p50 activity was measured using an ELISA-based colorimetric transcription factor assay kit. We found that VPA significantly and dose-dependently impaired NF-κB activity reducing DNA binding activity of NF-κB p50 subunit by 30% at 1mM, 40% at 1.5mM, and 70% at 3mM. Expression of interleukin-1 receptor-associated kinase-1 (IRAK-1) protein, an upstream mediator of NF-κB activation, was reduced by ̴30% at 1 and 1.5mM. Furthermore, 3mM VPA treatment significantly decreased expressions of IRAK-1, phospho-IκBα and NF-κB p50 subunit protein by ̴ 50%. This is the first study to demonstrate that VPA decreases NF-κB activity in a progressive thyroid cancer cell line. Intriguingly, 1mM of VPA, a clinically safe dose in the therapeutic range for epilepsy, was sufficient to reduce NF-κB activity. Thus, VPA may be a promising agent to overcome chemoresistance in cancer therapy and to improve therapeutic efficiency.

* Member of the West German Cancer Centre Essen (WTZE)


Supporting Information

 
  • References

  • 1 DeLellis RA, Williams ED. Tumours of the Thyroid and Parathyroid. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C. (ed.) World Health Organization Classification of Tumours, Pathology & Genetics, Tumours of Endocrine Organs. Lyon: IARC Press; 2004: 49-133
  • 2 Schmid KW, Sheu SY, Tötsch M, Görges R, Bockisch A, Mann K. Pathologie des Schilddrüsenkarzinoms. Der Onkologe 2005; 11: 29-39
  • 3 Blaheta RA, Michaelis M, Driever PH, Cinatl Jr J. Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies. Med Res Rev 2005; 25: 383-397
  • 4 Cinatl Jr J, Cinatl J, Scholz M, Driever PH, Henrich D, Kabickova H, Vogel JU, Doerr HW, Kornhuber B. Antitumor activity of sodium valproate in cultures of human neuroblastoma cells. Anti-cancer Drugs 1996; 7: 766-773
  • 5 Driever PH, Knüpfer MM, Cinatl J, Wolff JEA. Valproic acid for the treatment of pediatric malignant glioma Valproinsäure zur Behandlung maligner Gliome im Kindesalter. Klin Padiatr 1999; 211: 323-328
  • 6 Knüpfer MM, Hernaiz-Driever P, Poppenborg H, Wolff JEA, Cinatl J. Valproic acid inhibits proliferation and changes expression of CD44 and CD56 of malignant glioma cells in vitro. Anticancer Res 1998; 18: 3585-3589
  • 7 Michaelis M, Doerr HW, Cinatl J. Valproic acid as anti-cancer drug. Current Pharmaceut Des 2007; 13: 3378-3393
  • 8 Catalano MG, Fortunati N, Pugliese M, Costantino L, Poli R, Bosco O, Boccuzzi G. Valproic acid induces apoptosis and cell cycle arrest in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 2005; 90: 1383-1389
  • 9 Fortunati N, Catalano MG, Arena K, Brignardello E, Piovesan A, Boccuzzi G. Valproic acid induces the expression of the Na+/I-symporter and iodine uptake in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 2004; 89: 1006-1009
  • 10 Noguchi H, Yamashita H, Murakami T, Hirai K, Noguchi Y, Maruta J, Yokoi T, Noguchi S. Successful treatment of anaplastic thyroid carcinoma with a combination of oral valproic acid, chemotherapy, radiation and surgery. Endocr J 2009; 56: 245-249
  • 11 Shen WT, Wong TS, Chung WY, Wong MG, Kebebew E, Duh QY, Clark OH. Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 2005; 138: 979-985
  • 12 Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol 2010; 2010: 1-18
  • 13 Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, Dejeneffe M, Massy M, Meuleman N, Kentos A, Martiat P, Willems L. Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp Hematol 2007; 35: 1527-1537
  • 14 Neri P, Tagliaferri P, Di Martino MT, Calimeri T, Amodio N, Bulotta A, Ventura M, Eramo PO, Viscomi C, Arbitrio M. In vivo anti-myeloma activity and modulation of gene expression profile induced by valproic acid, a histone deacetylase inhibitor. Br J Haematol 2008; 143: 520-531
  • 15 Li X, Abdel-Mageed AB, Mondal D, Kandil E. The Nuclear Factor Kappa-B Signaling Pathway as a Therapeutic Target Against Thyroid Cancers. Thyroid 2013; 23: 209-218
  • 16 Mercurio F, Manning AM. NF-kappaB as a primary regulator of the stress response. Oncogene 1999; 18: 6163-6171
  • 17 Pacifico F, Mauro C, Barone C, Crescenzi E, Mellone S, Monaco M, Chiappetta G, Terrazzano G, Liguoro D, Vito P. Oncogenic and anti-apoptotic activity of NF-kB in human thyroid carcinomas. J Biol Chem 2004; 279: 54610-54619
  • 18 Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, Miano MP, de Nigris F, Casalino L, Curcio F. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NFkappaB p65 protein expression. Oncogene 1997; 15: 1987-1994
  • 19 Li F, Sethi G. Targeting transcription factor NF-kB to overcome chemoresistance and radioresistance in cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2010; 1805: 167-180
  • 20 Pályi I, Péter I, Daubner D, Vincze B, Lõrincz I. Establishment, characterization and drug sensitivity of a new anaplastic thyroid carcinoma cell line (BHT-101). Virchows Archiv B Cell Pathol Zell-Pathol 1993; 63: 263-269
  • 21 Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 2008; 27: 5643-5647
  • 22 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12481-12486
  • 23 Chen YT, Kitabayashi N, Zhou XK, Fahey TJ, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol 2008; 21: 1139-1146
  • 24 He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu C, Franssila K, Suster S, Kloos RT, Croce CM, De La Chapelle A. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005; 102: 19075-19080
  • 25 Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008; 93: 1600-1608
  • 26 Schwertheim S, Sheu SY, Worm K, Grabellus F, Schmid KW. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res 2009; 41: 475-481
  • 27 Sheu SY, Vogel E, Worm K, Grabellus F, Schwertheim S, Schmid KW. Hyalinizing trabecular tumour of the thyroid-differential expression of distinct miRNAs compared with papillary thyroid carcinoma. Histopathology 2010; 56: 632-640
  • 28 Abdul M, Hoosein N. Inhibition by anticonvulsants of prostate-specific antigen and interleukin-6 secretion by human prostate cancer cells. Anticancer Res 2001; 21: 2045-2048
  • 29 Go HS, Seo JE, Kim KC, Han SM, Kim P, Kang YS, Han SH, Shin CY, Chang CC, Chang CY. Valproic acid inhibits neural progenitor cell death by activation of NF-kappaB signaling pathway and up-regulation of Bcl-XL. J Biomed Sci 2011; 18: 48
  • 30 Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S. Sodium valproate inhibits production of TNF-[alpha] and IL-6 and activation of NF-[kappa] B. Brain Res 2000; 857: 246-251
  • 31 Rao JS, Bazinet RP, Rapoport SI, Lee HJ. Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-kB DNA binding activity and COX 2 mRNA1. Bipol Disord 2007; 9: 513-520
  • 32 Galimberti S, Canestraro M, Savli H, Palumbo GA, Tibullo D, Baaa N, Piaggi S, Guerrini F, Cine N, Metelli MR. ITF2357 Interferes with Apoptosis and Inflammatory Pathways in the HL-60 Model: A Gene Expression Study. Anticancer Res 2010; 30: 4525-4536
  • 33 LaBonte M, Wilson P, Fazzone W, Groshen S, Lenz HJ, Ladner R. DNA microarray profiling of genes differentially regulated by the histone deacetylase inhibitors vorinostat and LBH589 in colon cancer cell lines. BMC Med Genom 2009; 2: 67
  • 34 Li Y, Alam HB. Modulation of Acetylation: Creating a Pro-survival and Anti-Inflammatory Phenotype in Lethal Hemorrhagic and Septic Shock. J Biomed Biotechnol 2011; 2011: 523481
  • 35 Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, Fossati G, Moroni F, Chiarugi A. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009; 36: 269-279
  • 36 Huang N, Katz JP, Martin DR, Wu GD. Inhibition of IL-8 gene expression in Caco-2 cells by compounds which induce histone hyperacetylation. Cytokine 1997; 9: 27-36
  • 37 Kramer OH, Gottlicher M, Heinzel T. Histone deacetylase as a therapeutic target. Trends Endocrinol Metab 2001; 12: 294-300
  • 38 Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 2009; 1: 402-411
  • 39 Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: e301
  • 40 Gan CP, Hamid S, Hor SY, Zain RB, Ismail SM, Wan Mustafa WM, Teo SH, Saunders N, Cheong SC. Valproic acid: Growth inhibition of head and neck cancer by induction of terminal differentiation and senescence. Head Neck 2012; 34: 344-353
  • 41 Li XN, Shu Q, Su JMF, Perlaky L, Blaney SM, Lau CC. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 2005; 4: 1912-1922
  • 42 Cowland JB, Hother C, Grønbæk K. MicroRNAs and cancer. Apmis 2007; 115: 1090-1106
  • 43 Sztajnkrycer MD. Valproic acid toxicity: overview and management. Clin Toxicol 2002; 40: 789-801