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Hepatitis C virus (HCV) infection still is a major health burden
affecting 130 to 170 million people worldwide. Most infec-
tions persist and persistently infected individuals have a high
risk to develop liver cirrhosis and hepatocellular carcinoma
after 10 to 30 years of infection.1 The first effective therapy
regimen that became the standard of care (SOC) for many
years, was the combination of interferon α (IFNα) and ribavi-
rin (RBV).2,3 However, sustained virological response (SVR)
rates strongly depended on the HCV genotype.3,4 In addition,
severe side effects such as hemolytic anemia, changes in
blood cell counts and psychiatric disorders such as depression
are major limitations of this therapy. Because of that, many
patients are not eligible for this treatment.4,5

To overcome these problems, intensive research efforts
have been undertaken to develop HCV-specific direct-acting
antivirals (DAAs). Direct-acting antivirals target viral proteins
required for the HCV lifecycle, whereas host-targeted agents
(HTAs) target host cell factors needed by the virus for
productive replication (►Table 1). The first DAAs approved
in 2011 were inhibitors of the HCV protease residing in

nonstructural protein 3 (NS3): boceprevir (BOC) and telap-
revir (TVR), which are now implemented into SOC protocols
for HCV genotype1 infections.6–10 These drugs increased SVR
rates in genotype 1 infections from 40% to around 75%.6–10

However, these DAAs are very selective for HCV genotype 1
and increase the frequency of side effects as compared with
SOC.7–10 In addition, the barrier to resistance for these drugs
is low. In fact, single-nucleotide substitutions are sufficient to
render HCV resistant while retaining replication fitness.11,12

Thus, research efforts aimed to develop new DAAs targeting
the NS3 protease with higher potency or additional viral
proteins aswell as HTAs. These efforts are beginning to pay off
and second-wave, first-generation, and second-generation
NS3 protease inhibitors as well as drugs targeting the NS5B
RNA-dependent RNA polymerase (RdRp) or the NS5A protein
are in late-stage clinical development. In this brief review, we
will summarize the major structural and functional features
of the prime targets of HCV-specific DAAs. We will include
short descriptions of host factors that are considered as
targets for antiviral therapyaswell as alternative viral targets.
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Abstract Presently, interferon- (IFN-) containing treatment regimens are the standard of care for
patients with hepatitis C virus (HCV) infections. Although this therapy eliminates the
virus in a substantial proportion of patients, it has numerous side effects and contra-
indications. Recent approval of telaprevir and boceprevir, targeting the protease
residing in nonstructural protein 3 (NS3) of the HCVgenome, increased therapy success
when given in combination with pegylated IFN and ribavirin, but side effects are more
frequent and the management of treatment is complex. This situation will change soon
with the introduction of new highly potent direct-acting antivirals. They target, in
addition to the NS3 protease, NS5A, which is required for RNA replication and virion
assembly and the NS5B RNA-dependent RNA polymerase. Moreover, host-cell factors
such as cyclophilin A ormicroRNA-122, essential for HCV replication, have been pursued
as therapeutic targets. In this review, the authors briefly summarize the main features of
viral and cellular factors involved in HCV replication that are utilized as therapy targets
for chronic hepatitis C.
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HCV Genome Organization and Replication
Cycle

HCV is grouped in the family Flaviviridae in the genus
Hepaciviruses.13 These viruses have in common a single-
stranded RNA of positive polarity (►Fig. 1A). The RNA has a
single open reading frame that is flanked by 5′- and 3′-
nontranslated regions (NTRs), respectively.

The HCV replication cycle is tightly linked to the lipid
metabolism of the host cell (►Fig. 1B). Virions are closely
associated with apolipoproteins and circulate in the blood-
stream of patients as lipoviroparticles.14,15 Trapping of virus
particles on the surface of the host cell is mediated by interac-
tion with glycosaminoglycans (GAGs) and the low-density
lipoprotein receptor (LDL-R). Thereafter, the viral envelope
glycoproteins E1 and E2 interact with four different cellular
receptormolecules: scavenger receptor class B type1 (SCARB1),
the tetraspanin CD81, and the tight junction components
occludin (OCLN) and claudin 1 (CLDN1) (reviewed in16)

(►Fig. 1B). In addition, entry is facilitated by interaction of
HCVwith the epidermal growth factor receptor (EGFR)17 or the
Niemann-Pick C1-like 1 cholesterol absorption receptor
(NPC1L1),18 which likely contributes to virus uptake and
liberation of the viral RNA genome into the cytoplasm. Upon
release, this RNA is translated at the rough endoplasmic
reticulum (ER) giving rise to a single polyprotein, which is
co- and posttranslationally processed into 10 proteins (re-
viewed in19) (►Fig. 1A): the structural proteins—core and
envelope glycoproteins E1 and E2; the viroporin p7 required
for virus particle formation20; nonstructural protein 2 (NS2)
that mediates cleavage between NS2 and NS3 and is also
required for virion assembly; NS3, composed of protease and
helicase domains that are required for polyprotein processing
and RNA replication, respectively; NS4A that acts as a cofactor
of NS3 and activates NS3 protease activity; NS4B that induces
membrane alterations; the multifunctional NS5A, required for
replication and assembly; and the NS5B RdRp. The structural
proteins as well as p7 and NS2 are processed by host cell signal

Table 1 Targets for hepatitis C virus (HCV) specific antiviral therapy. Viral and cellular factors involved in the viral life cycle and their
respective functions are listed. Drug classes and their mode of action are also given.

Targets for antiviral therapy

Viral factor Virological function Drug classes/ mode-of-action

E1/E2 Envelope gylcoproteins, cell attachment
and cell entry

Neutralizing antibodies

p7 Viroporin; involved in assembly and
release of infectious virions

Amantadine, imino sugars

NS3/4A Serine protease; processing of viral
polyprotein; interference with innate
immunity

Covalently, but reversibly binding linear
peptidomimetics; noncovalently binding
linear inhibitors; macrocyclic inhibitors

Preventing proper polyprotein processing;
restoring interferon response

NS4B Membrane remodeling Various small-molecule inhibitors; silibinin
Interference with ns4b-RNA interaction;
membrane association; ns3/4a-ns4b
interaction

NS5A RNA replication, assembly of virus par-
ticles, induction of double membrane
vesicles

Ns5a-inhibitors
Interference with membranous web
formation, impairing virus production

NS5B RNA-dependent RNA-polymerase Nucleosidic inhibitors (NI);
Nonnucleosidic inhibitors (NNI)

Chain termination; inhibiting RNA tem-
plate binding and initiation of elongation

Host factor Virological function

CD81 Essential entry factor Various antibodies and small molecule
inhibitors

Interference with cell-attachment, virus
entry and cell-to-cell-transmission

SCARB1 Essential entry factor

OCLN Essential entry factor

CLDN1 Essential entry factor

Cyclophilin A NS5A cofactor (Non-) immunosuppressive cyclosporine
A derivatives; sanglifehrin

Interference with membranous web
formation and RNA replication

miR122 Stabilizing viral RNA, promoting RNA
translation and replication

Antagomirs
Sequestering mir-122
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peptidase and signal peptide peptidase,19whereas the remain-
der of the polyprotein is processed primarily by the NS3
protease (►Fig. 1A).

HCV replication occurs in the cytoplasm in a specialized
membranous compartment that has been designated “mem-
branous web” (►Fig. 1B).21,22 This web is induced by a
concerted action of the “replicase factors” NS3, NS4A, NS4B,
NS5A, and NS5B.23 The NS5B RdRp is responsible for ampli-
fying the positive-strand RNA genome via a negative-strand

copy that in turn serves as a template for the synthesis of large
amounts of new positive-strand RNA molecules. Virion as-
sembly occurs in close vicinity to lipid droplets where core
protein and NS5A localize.24,25 Newly formed nucleocapsids
acquire their envelope via budding through the ERmembrane
in close association with the host cell machinery that is
responsible for the synthesis of very-low-density lipoproteins
(VLDL). In this way, newly assembled virions associate with
VLDL/LDL components and are secreted as lipoviroparticles,
presumably along the constitutive secretory pathway.14,26–28

Released particles infect new host cells either via the
extracellular route or by direct cell-to-cell-transmission.
The latter is thought to be the major route of HCV propaga-
tion in vivo. This route appears to be less susceptible to
neutralizing antibodies and has somewhat different require-
ments for entry molecules as compared with infection by
cell-free virions.16 For instance, it has been reported that cell-
to-cell transmission occurs independent from CD81.29,30

Moreover, SCARB1 appears to play a more prominent role
in cell-to-cell spread as compared with infection with cell-
free virus.31

Viral Targets for Therapy of Chronic
Hepatitis C

NS3 Protease
NS3 is a bifunctional molecule (►Fig. 2A). The amino-termi-
nal domain comprises a serine-type protease, whereas the
carboxy-terminal domain possesses ATP-dependent helicase
activity.19 Although the helicase function is likely involved in
unwinding viral RNA and supporting RNA replication, the
protease domain is responsible for cleavage between NS3-4A,
NS4A-4B, NS4B-5A, and NS5A-5B. In addition to processing of
the viral polyprotein, host-cell factors that play important
roles for the activation of the innate immune response are
proteolytically inactivated by NS3. Best-known examples are
mitochondrial antiviral-signaling protein (MAVS) and TIR-
domain-containing adapter-inducing IFN-β (TRIF) that are
essential for the activation of the IFN system.32,33 In this way,
HCV subverts proper innate immune response that otherwise
efficiently blocks viral replication.

The NS3 protease has several unique properties.34 It has a
rather low substrate specificity that is defined by an acidic
amino acid residue at the P6 position (i.e., six residues N-
terminal of the cleavage site) and a cysteine residue at the P1
position. High protease activity requires NS4A as a cofactor
that serves several purposes: First, it tethers NS3 to the outer
leaflet of the ER-membrane (►Fig. 2A) and stabilizes the
protein that is otherwise rapidly degraded when NS4A is
missing35; second, the NS4A cofactor enhances catalytic
activity of the protease as well as its interaction with the
substrate36; third, NS4A forms an integral part of the prote-
ase.37,38 The NS3 protease is composed of two domains that
are separated by a deep cleft that contains the active site. The
amino-terminal domain consists of eight β-strands. Seven of
them are formed by NS3 itself, whereas one is formed by the
central region of NS4A, which thus constitutes an integral
part of the protease (►Fig. 2A). The structural role of NS4A is

Fig. 1 Genomic organization and replication cycle of the hepatitis C
virus (HCV). (A) The single-stranded RNA genome forms highly struc-
tured nontranslated regions (NTR) at the 5′ and 3′ ends; the 5′-NTR
contains an internal ribosome entry site (IRES). The open reading
frame encodes for a single polyprotein that is processed by cellular
signal peptidases and signal peptide peptidases (arrows below the
schematic), as well as the viral proteases NS2 and NS3 (curved arrows
above the schematic). The polyprotein can be functionally divided into
the assembly module, comprising core to NS2 (grey boxes) and
facilitating assembly and release of new virions,20 and the replication
module consisting of NS3 to NS5B (green boxes). The latter are required
for biogenesis of the membranous web (MW) and replication of the
viral RNA. (B) Entry of HCV particles requires successive interactions
with CD81, SCARB1, CLDN1, and OCLN (step 1). The viral RNA is
released into the cytoplasm and translated at the rough endoplasmic
reticulum (ER; step 2). The polyprotein is proteolytically processed and
membranes are remodeled giving rise to the membranous web that is
composed primarily of double membrane vesicles in close proximity to
lipid droplets (step 3). Within the MW, viral RNA is amplified via a
negative-strand intermediate (step 4). Virus particles are assembled at
the ER in close vicinity of lipid droplets (LDs) and released via the
secretory pathway (step 5). Steps of the viral life cycle addressed by
direct-acting antivirals and their respective targets are indicated.
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underscored by the fact that in the absence of this cofactor,
the 30 amino-terminal residues of NS3 are loosely oriented
and do not form a rigid structure.

The carboxy-terminal NS3 protease domain forms a β-
barrel structure stabilized by a zinc atom that is complexed by
three highly conserved cysteine residues and one histidine
residue.39 This zinc atom plays a structural role and is not
involved in the catalytic activity of the protease. The active
site composed of the catalytic triad (H57, D81, and S139 in
case of genotype 1) of the NS3/4A protease is rather flat and
lacks prominent surface loops that usually surround the
active site of other serine-type proteases. Given this shallow
substrate-binding pocket, the NS3 protease requires relative-
ly long substrates for efficient binding. Optimal substrate
recognition occurs with substrates that are 10 amino acid

residues long interacting with the enzyme by a series of weak
molecular interactions distributed across the substrate sur-
face (reviewed in40). It is hypothesized that the low substrate
specificity is compensated by the tethering of the NS3/4A
complex to the ER membrane, thus providing spatial proxim-
ity between the substrate and the protease.41

Different approaches have been pursued to develop NS3
protease inhibitors (PIs). These are competitive inhibitors
preventing substrates to enter the active site or allosteric
inhibitors interfering with crucial conformational changes
that are required for substrate cleavage. Up to now, three
different classes of competitive NS3 PIs have been developed:
(1) covalently, but reversibly binding linear peptidomimetics
(e.g., telaprevir, boceprevir); (2) noncovalently binding linear
inhibitors (e.g., BMS-650032, BI201335); (3) macrocyclic

Fig. 2 Three-dimensional structures of hepatitis C virus (HCV) proteins that are prime targets for antiviral therapy. (A) Membrane topology of the
NS3 protease/helicase in complex with the NS4A cofactor.41 The amino-terminal protease domain is indicated in blue, the carboxy-terminal
helicase domain in green. The NS4A cofactor that tethers NS3 to intracellular membranes is indicated in brown. Note that the central region of
NS4A forms an integral part of the protease domain. Amino acid residues forming the active site of this enzyme are shown in red. (B) Structures of
membrane-associated NS5A dimers according to Love and colleagues62 (back-to-back structure model) and Tellinghuisen and coworkers61 (claw-
like structure model). Each subunit (light blue and pink, respectively) consists of the amino-terminal AH, (PDB accession 1R7E), the highly
structured D1 (PDB accession 3FQQ and 1ZH1 for left and right structures, respectively) and the intrinsically unfolded D2 and D3 (only
representative conformers are shown; F. Penin, unpublished). Note that the relative positions of the different structure elements are speculative,
especially the position of D1 relative to the membrane and the AH helices. The only consistent positioning is that of AH relative to the membrane
that was simulated by using molecular dynamics (F. Penin, unpublished). (C) Structure of membrane-bound NS5B. Ribbon diagram of NS5B (PDB
accession 1GX6) and association with the membrane via the carboxy-terminal transmembrane tail (bronze). Finger (F), palm (P), and thumb (T)
subdomains (light blue, yellow, light green, respectively) are indicated. The “closed” conformation of the proposedmembrane topology of NS5B is
shown in the upper panel. This structure is thought to represent the initiation state of the RdRp. The active site of the enzyme is highlighted by two
priming nucleotides (red). Note the stacking of the NS5B ectodomain to the membrane in this proposed conformation. A model of NS5B in a
hypothetical elongation model is shown in the lower panel. In this structure, the RNA-binding groove would be released and could accommodate a
double-stranded RNA replication intermediate. This intermediate was modeled into the active site according to a recent publication.85 According
to this model, the catalytic core of NS5B would be dislocated away from the membrane as a result of “stretching” of the linker sequence (F. Penin,
unpublished). Such a conformational change might occur during switching from initiation to elongation of RNA synthesis. In all panels, the
membrane is represented as a simulated model in which polar heads and hydrophobic tails of phospholipids (stick structures) are colored light
gray and light yellow, respectively.
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inhibitors (e.g., MK-5172, vaniprevir, danoprevir, simepre-
vir).40,42,43 Development of these compounds was based on
the observation that the NS3 protease undergoes end product
inhibition.44,45 This means that after cleavage of its substrate,
the P-side cleavage product remains tightly bound to the
active site, thus competing with the binding of new sub-
strates.44,45 By using P-side peptides as lead structures and
intensive derivatization, highly efficient NS3 protease inhib-
itors have been developed.

First proof-of-concept was achieved with the macrocyclic
inhibitor ciluprevir (BILN 2016).46 However, during subsequent
trials with other PIs, it became rapidly clear that monotherapy
would not be successful with these drugs because of the rapid
selection for drug resistance. Indeed, for many PIs single-nucle-
otide substitutions are sufficient to render the NS3 protease
resistant; unfortunately, many of these mutations have little
effect on replication fitness and thus, are retained even after
cessation of therapy.11,47,48 Moreover, many of these mutations
confer resistance against multiple PI-classes.49 For instance,
mutations affecting amino acid residues 41, 43, 54, 155, and
156 of NS3 confer resistance against linear peptidomimetics and
macrocyclic inhibitors, thereby causing a profound loss of thera-
peutic options.50 Moreover, natural polymorphisms affecting
these sites contribute to poor antiviral efficacy against HCV
genotypes other than 1,50,51which ismost pronounced for “first
generation” PIs that have been developed and optimized by
using genotype 1-based replicon systems. More recently devel-
oped PIs, such as MK-5172, overcome this limitation.43 Apart
from its pan-genotypic activity, this compound is substantially
less affected by mutations that confer resistance to first-genera-
tiondrugs,which is likelydue to theveryclose interactionofMK-
5172 with the catalytic triad of the enzyme that has not been
observed for other PIs.43,52,53

One alternative concept to inhibit the NS3 protease is
interference with the binding site of the zinc atom, thus
inducing misfolding of the protein.54 Another possibility is
a block of the interaction of NS3 with its cofactor NS4A, as
exemplified with the compound ACH-806 (halted develop-
ment).55,56 Finally, recent crystallography studies revealed a
region residing between the NS3 protease and the helicase
domain (►Fig. 2A) that can be targeted by antiviral com-
pounds. It is proposed that the NS3/4A complex exists in two
distinct conformations: an open conformation with catalytic
activity and a closed one, the autoinhibited form. The newly
identified compounds block protease activity by keeping the
enzyme in the autoinhibited conformation, that is a state
where the carboxy-terminal region of NS3 itself is located
close to the active site of the amino-terminal NS3 protease
domain,57 thus preventing substrates to enter. Interestingly,
resistancemutations affect amino acid residues located in the
putative binding site of the compound. This site has only
moderate intergenotypic conservation, explaining the limit-
ed antiviral activity of this compound class across different
HCV genotypes.50,51

NS5A
NS5A is a multifunctional factor with no known enzymatic
activity.19 It is required for RNA replication, formation of the

membranous web, and assembly of infectious HCV particles.
In addition, it has been reported that NS5A might affect the
antiviral response of the host cell and contribute to patho-
genesis.58 NS5A is composed of an amino-terminal amphi-
pathic α-helix (AH) required for membrane attachment of the
protein59 and recruitment to lipid droplets25 and three
domains (D1–3) that are separated by two low complexity
sequences (►Fig. 2B).60 Although D1 forms well-structured
homodimers.61,62 D2 and D3 are intrinsically unfolded and
thus capable to interact with multiple viral and cellular
factors.63,64 It is thought that NS5A exerts its multiple func-
tions by interactingwith various viral factors, such as the RNA
genome, NS4B, or NS5B, as well as with host-cell proteins like
human vesicle-associatedmembrane protein-associated pro-
tein A (hVAP-A), phosphatidylinositole-4-phosphatekinase III
α (PI4KIII-α), or cyclophilin A (CypA). Although D1 and parts
of D2 are required for RNA replication, most of D3 is dispens-
able for this process, but essential for assembly of infectious
virus particles,65,66 presumably by mediating an interaction
with the core protein during virion formation.67 D2 and
especially D3 are also very tolerant to insertion of large
heterologous sequences, such as green fluorescent proteins,
thus allowing the set-up of systems that monitor NS5A-
containing structures in live cells.68–70

NS5A is phosphorylated at several sites, giving rise to a basal
and a hyperphosphorylated form (p56 and p58, respective-
ly).71 Phosphorylation is mediated by cellular kinases, most
notably the α-isoform of casein kinase 1 and casein kinase
2.66,72 It is assumed that additional host-cell kinases are
involved in NS5A phosphorylation, but this is not definitively
proven. Interestingly, mutations enhancing RNA replication in
cell culture frequently affect putative phosphorylation sites in
NS5A, but reduce virus particle formation,73 arguing that the
phosphorylation status might regulate different steps of the
HCV life cycle.

Two alternative NS5A homodimers havebeen identified by
X-ray crystallography of highly purified recombinant NS5A
D1 proteins (►Fig. 2B).61,62 Although the structures of the
monomers are identical, they can self-interact in different
ways, giving rise to two alternative dimer structures desig-
nated the “claw-like” structure and the “back-to-back” struc-
ture.Moreover, by using in silico studies, it has been proposed
that the monomers and/or dimers might form large multi-
meric complexes.62 Although experimental proof is lacking, it
is tempting to speculate that multimerization might be
regulated by the phosphorylation status of NS5A.

Owing to the lack of enzymatic activity, NS5A has been
considered “nondruggable.” However, this view changed with
the discovery of compounds that suppress HCV replication with
high potency in cell-culture systems and select resistant viral
variantswithmutations inNS5A. Byusing randomscreeningof a
large compound library and intensive subsequent optimization
of the identified lead structure, Gao and colleagues were able to
develop the antiviral compound daclatasvir (formerly BMS
790052), suppressing HCV RNA replicationwith unprecedented
potency.74 The exact mode-of-action of this compound is not
known, but several phenotypes have been reported. These
include a change of the p56/p58 ratio in favor of the basal
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phosphorylated NS5A form, as well as redistribution of NS5A
from the ER to LDs.75–77 However, these phenotypes are pleio-
tropic and can be induced by several other means such as
treatment with a NS3 protease inhibitor or knockdown of
PI4kIII-α expression.78 Thus, a more plausible hypothesis that
takes into account the high potency of this drug class is the
disruption or “fragmentation” of NS5Amultimers. In thismodel,
biological activity of NS5Awould be exerted by largemultimeric
complexes, forming “RNArailways” that couldbind theviral RNA
genome (especially in case of multimers composed of the claw-
like structure). Binding of only a few inhibitor molecules might
fragment these multimers, rendering them nonfunctional. This
is an attractive hypothesis, but confirmation will require assays
that allow discrimination between NS5A dimers and oligomers.
For instance, we found that highly potent NS5A inhibitors do not
disrupt NS5A self-interaction as determined by pulldown (C.
Berger and R. Bartenschlager, unpublished). However, pulldown
assaysdonotdiscriminatebetweendimers andmultimers. Thus,
more sophisticated biochemical approaches are required.

Whatever the impact of Daclatasvir-like drugs on NS5A
structure is, we found that these inhibitors potently block
biogenesis of themembranousweb, and thus RNA replication
(C. Berger and R. Bartenschlager, unpublished). This result
corroborates the important role of NS5A in inducing mem-
brane alterations, most notably formation of double mem-
brane vesicles (DMVs), which are the likely sites of HCV RNA
replication.23,79

A hallmark of highly active NS5A inhibitors is their sym-
metric structure. They are thought to bind to NS5A across the
dimer interface.80 This binding mode would fit with the
position of the most frequently found resistance mutations
affecting amino acid residue 93, which resides near the dimer
interface in each of the dimer structures. Interestingly, several
additional resistance mutations affect residues that are locat-
ed close to the amino-terminal end of D1, arguing that they
might affect positioning and/or folding of the linker segment
connecting D1 with the amino-terminal membrane-anchor-
ingα-helix (►Fig. 2B). Howsuch alterations of NS5A structure
would affect its ability to induceMW formation remains to be
determined.

Apart from affecting RNA replication, recent results ob-
tainedwithmathematicalmodeling based onHCV replication
kinetics in infected patients suggest that production and
release of HCV particles is also affected by NS5A inhibitors.81

Consistent with the model, comparison of HCV-infected cells
treated with daclatasvir or a NS5B RdRp inhibitor revealed
comparable kinetics of inhibition of RNA replication with
both drugs in vitro. However, daclatasvir induced a much
faster decline of HCV titers as compared with the polymerase
inhibitor, arguing that this highly potent NS5A inhibitor has a
dual mode of action: blocking RNA replication and virus
production. Whether this is due to interference with two
structurally distinct NS5A complexes remains to be
determined.

NS5B
The core of the replication machinery responsible for ampli-
fication of the HCV genome is the NS5B RdRp. This protein is

tethered to intracellular membranes posttranslationally by a
membrane anchor located in the carboxy-terminal region
(►Fig. 2C).19 NS5B displays the typical “right-hand” confor-
mation with finger, palm, and thumb subdomains.82–84 The
active site of the polymerase is located in the palm subdomain
and includes a GDD motif that is involved, via complexed
Mg2þ ions, in binding of nucleotide substrates and nucleotide
polymerization. A hallmarkof the enzyme is the rather closed
conformation of the active site that is due to intensive
interactions between fingers and thumb subdomains. More-
over, the active site is occluded by a short segment of the
thumb domain, designated the β-flap. This closed conforma-
tion likely reflects the enzyme at the stage of de novo
initiation of RNA synthesis, which is thought to be the
mechanism by which NS5B initiates HCV RNA replication in
vivo. Transition into the elongate state requires removal of the
β-flap.85 Apart from conformational changes around the
active site, NS5B likely has to undergo major structural
rearrangements to allow binding of the RNA template
(►Fig. 2C, lower panel). Molecular modeling suggests that
the RNA-binding grove is stacked toward the membrane
surface, thus precluding binding of the RNA template.19

RNA bindingmight be achieved by a “stretching” of the linker
connecting the carboxy-terminal membrane anchor with the
RdRp domain, thus liberating the RNA binding grove
(►Fig. 2C).

Inhibition of NS5B can be achieved by two different
strategies: first, nucleoside or nucleotide inhibitors (NIs)
that mimic the natural substrate and are incorporated into
the newly synthesized RNA strand finally leading to termi-
nation of elongation86; second, nonnucleoside inhibitors
(NNIs) that bind to the enzyme and act as allosteric inhibitors
by inducing conformational changes that impair polymerase
activity.40,87,88

Nucleotide inhibitors have pangenotypic activity, which is
likely due to the high conservation of the active site. Nucleo-
tide inhibitors are given as ribonucleosides to allow mem-
brane permeation, but need to be converted into the
corresponding 5′-triphosphate by host cell kinases. After
phosphorylation, NIs are accepted as substrates of the viral
RdRp and incorporated into the growing RNA chain, thus
causing “chain termination.” However, most NIs developed
for hepatitis C therapy retain a free 3′-hydroxyl group, but
contain modifications at the ribose 2’-position because 3′-
deoxy-modified nucleosides are inefficiently phosphorylated
and thus, poorly active in cell culture.89 For 2’-modified NIs,
chain termination is indirect and induced by steric hindrance
resulting from the modifications at the ribose 2’-position,
which is at variance to classical chain terminators such as
acyclovir or tenofovir that are used in other viral infections.
Moreover, NIs have to be given as prodrugs, most often as
nucleosides to allow membrane penetration. Upon uptake,
these NIs have to be converted first into the 5′-monophos-
phate, which is a rate-limiting step, and then into the di- and
triphosphate. To overcome this rate limitation, NIs such as
sofosbuvir have been designed as nucleotide analogues,
that correspond to 5′-monophosphates.90 To allow efficient
uptake into cells, these poorly membrane-permeable
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5′-monophosphates are extensively derivatized. These chem-
ical modifications have to be removed by cellular enzymes,
thus liberating the corresponding 5′-monophosphate in the
cell.

Given the structural similarity of HCV-specific NIs, a single
amino acid substitution in NS5B (S282T) confers resistance to
all 2’-modified NIs.91 However, only low-level resistance is
conferred by this mutation that causes dramatic reduction of
replication fitness. This explains why the S282Tmutation has
been rarely observed at clinically meaningful levels in NI-
treated patients.92

Nonnucleoside inhibitors comprise a chemically hetero-
geneous group of compounds. There are at least four distinct
allosteric NNI-binding sites designated according to their
position within NS5B40: thumb-1 and thumb-2 are located
on the polymerase thumb domainwhereas palm-1 and palm-
2 reside in the palm domain and close to the active site. The
NNI-binding sites are not well conserved among HCV geno-
types, thus explaining profound genotype specificity of anti-
viral activity. For instance, thumb-1 NNIs show good antiviral
activity against genotype 1 and genotype 3 isolates, whereas
activity against genotype 2 isolates is rather poor.93 Because
NS5B has two major conformational states, a closed one to
initiate RNA-synthesis and a more open one for elongation of
the RNA chain (see above), NNIs can either induce unfavor-
able conformational changes like a hyperclosed active site in
which template binding is not possible, or limit the overall
mobility of the enzyme that is necessary for initiating RNA
synthesis.94,95

Due to the different binding sites of NNIs, these com-
pounds can be used for combination therapy. In case of
thumb-1 and thumb-2 NNIs, resistance mutations at one
binding site do not affect the other binding site. Only palm-
1 and palm-2 are physically overlapping; therefore, cross-
resistance occurs. By using cell-based assays, Delang and
colleagues40 demonstrated rapid selection for resistance
against single NNIs that did not affect susceptibility of HCV
to other NNI classes. Emergence of resistance could be
delayed when drug combinations were used and selection
for resistance against all classes of NNIs was only achieved in
triple therapy with low inhibitor concentrations. Subsequent
mutation analyses revealed no emergence of novelmutations,
but combinations of resistance mutations against the single
classes of NNIs.

Host Targets for Therapy of Chronic
Hepatitis C

MicroRNA-122
Micro-RNAs (miRNAs) are small noncoding RNAs that are
involved in controlling RNA translation. They bind to com-
plementary target sequences in the 3′-UTR of mRNAs and
cause translational arrest or degradation of the mRNA, de-
pending on the degree of homology between the miRNA and
the target sequence. In this respect, miRNAs are negative
regulators of host-cell protein synthesis. Surprisingly, the
liver-specific miRNA-122 (miR-122) was found to be a crucial
host dependency factor for HCV by promoting viral RNA

translation and/or replication.96 Two binding sites for miR-
122 reside within the 5′-NTR of the HCV RNA genome.96–98

Single nucleotide substitutions affecting the complementari-
ty betweenmiR-122 and the “seed sequence” in theHCV-RNA
abrogate viral replication, but these mutants can be rescued
by expression of an artificial miR-122 containing the com-
pensatory mutation. A third miR122 binding site is located in
the 3′-NTR of HCV, but seems to be dispensable for RNA
translation and replication.

The exact mechanism by which miR-122 contributes to
HCV replication is under investigation. Recent studies argue
for a stabilizing effect of miR-122 on HCV RNA and protection
from degradation by the exonuclease Xrn1,99,100 stimulation
of HCV-RNA translation,101 or enhanced RNA replication.96

Whether only one of these mechanisms is responsible for
promoting the HCV life cycle or whether they act in concert is
not completely clear. In any case, the dependency of HCV
replication on miR-122 provides an explanation for an ini-
tially puzzling observation: The knockdown of factors of the
miRNA-pathway, such as Dicer or Drosha—two components
of the RNA-induced silencing complex, efficiently impairs
HCV replication.102 These manipulations likely lower miR-
122 amounts, thus interfering with viral replication.

Given the important role of miR-122 for HCV replication,
therapeutic approaches based on sequestration and degradation
of miR-122 have been pursued. Proof-of-concept studies con-
firmed that depletion of miR-122 by chemically modified anti-
sense oligonucleotides (antagomirs) potently blocks HCV
replication in cell culture and in experimentally infected chim-
panzees.103 Based on these results, clinical trials with the miR-
122 targeting candidate Miravirsen have been conducted and
were found to reduce viral load or even lead to SVR after short-
term treatment without evidence of antiviral resistance.104

Despite of these encouraging results, more recently con-
cerns have emerged because it was found that miR-122
knockout mice display major lipid disorders like steatohepa-
titis and can develop fibrosis and even tumors, arguing that
miR-122 is a tumor suppressor.105,106 Indeed, preclinical and
clinical evaluation of miR-122-specific antagomirs revealed
alterations of lipid metabolism by these antagomirs resulting
in reduced serum cholesterol levels, but these aberrations
resolved completely after cessation of therapy and no long-
term adverse effects have been reported.103,104

The Host-Cell-Chaperone Cyclophilin A
Cyclophilins comprise one of three protein families having
peptidyl-prolyl cis-trans isomerase activity; they alter the
conformation of proteins by interconverting the cis and trans
isomers of peptide bonds with the amino acid proline. Cyclo-
philin A (CypA) is expressed in almost all tissues and is
inhibited by cyclosporin A (CsA) that binds to and sequesters
CypA (reviewed in107). This complex binds to the phosphatase
calcineurin and blocks its enzymatic activity. Because calci-
neurin regulates activity of the T cell transcription factor NF-
AT (nuclear factor activating T cell), T-cell activation is sup-
pressed, thus inducing an immunosuppressive state in which
allograft tolerance is significantly improved. Hence, CsA is
used in transplantation medicine.
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By using self-replicating HCV RNAs (replicons) in human
hepatoma cells, Watashi and coworkers made the surprising
observation that CsA efficiently suppressed viral replica-
tion.108 Subsequent studies identified cyclophilins as targets
for the replication-suppressive effect, most notably
CypA.109–111 It was found that enzymatic activity of CypA is
essential for promotion of HCV replication because active-site
mutants of CypA were unable to rescue viral replication in
CypA knock-down cell lines.111–113 However, caution should
be taken because active-site mutants of CypA no longer bind
the substrate; therefore, it is unclear whether the lack of
rescue is indeed due to requirement for isomerase activity or
simply to loss of substrate binding. Nevertheless, biochemical
studies have demonstrated that CypA interacts with NS5A.
The interaction site resides in D2 of NS5A and comprises a
cluster of proline residues.63,64 The mechanism by which
CypA contributes to HCV RNA replication is not clear, but it is
thought that the chaperone induces conformational changes
in NS5A, thus enhancing replicase activity. This might be due
to enhanced RNA binding of NS5A,114 or stimulation of NS5B
RdRp activity via interaction with (properly folded) NS5A or
efficient recruitment of NS5B to membranous replication
complexes.113,115 Apart from enhancing replicase activity,
evidence has been presented that NS2 also might be affected
by CypA because replication of HCV RNAs containing NS2
were much more sensitive to CypA inhibitors as compared
with viral RNAs lacking NS2.111,116 However, subsequent
studies showed that sensitivity to CypA inhibitors correlates
inversely with replication fitness, which is impaired by
NS2.117 We hypothesize that impairment of replication fit-
ness by NS2 might be due to a rate-limiting cleavage at the
NS2–3 site. Importantly, increased sensitivity of HCV replica-
tion to CypA inhibitors was only found with JFH-1-, but not
with genotype 1-derived replicons.117 Thus, NS5Amost likely
is the only HCV target of CypA.

Based on the initial observation that CsA efficiently in-
hibits HCV in replicon systems108 and in vivo in liver trans-
plant recipients,118 CsA derivatives have been developed
lacking immunosuppressive activity, but retaining antiviral
activity.119 These compounds retain interaction with CypA,
but have greatly reduced binding to calcineurin. Best clinical
evaluation is available for alisporivir (formerly Debio025). In
combination therapy with SOC, alisporivir enhanced SVR
rates significantly as compared with SOC, and even in mono-
therapy promising antiviral potency has been observed.119

Interestingly, CypA is also utilized by other viruses such as
coronaviruses,120 raising the possibility that nonimmuno-
suppressive CypA antagonistsmight have the potential to be a
broad-spectrum antiviral.

As expected, inhibitors targeting CypA have a high barrier
for drug resistance. Nevertheless, at least in cell culture,
viruses can be selected that are able to replicate in cells in
the presence of CypA antagonists. Two “classes” of such
mutations have been found: (1) mutations residing close to
the NS5A-B cleavage site that slow down polyprotein proc-
essing,111 and (2) mutations within D2 of NS5A affecting
residues D316 and Y317 (isolate JFH-1) that are located in a
proline-rich region, which has been implicated in CypA

binding.121–124 Importantly, resistance mutants still bind
CypA122,125 suggesting that these mutations render NS5A
folding less dependent on CypA.

Alternative Targets for HCV-Specific Therapy

Inhibition of HCV Entry
As described above, HCV utilizes several molecules for cell
entry (►Fig. 1B). Especially in the setting of liver transplan-
tation where reinfection of the allograft occurs without
exception, inhibition of viral entry is an attractive therapeutic
approach. One possibility to achieve this goal is neutralizing
antibodies directed against the viral E1/E2 envelope glyco-
protein complex.16 In fact, highly potent neutralizing anti-
bodies directed against E2 have been developed and were
shown to block HCV infection in vitro.126,127Moreover, cross-
neutralizing antibodies conferring some level of protection to
challenge with heterologous HCV strains in xenograft mouse
models have been reported.128 However, antiviral efficacy is
limited, which might be due to the high variability of HCV
envelope proteins and the tight association of virus particles
with lipoproteins. Another reason appears to be the efficient
cell-to-cell transmission of HCV, thus providing limited access
of virus particles to neutralizing antibodies. Nevertheless,
more potent antibodies have been developed that are cur-
rently under investigation.129,130

An alternative approach that overcomes some of these
limitations is to target host cell entry factors and pathways.
Antibodies directed against CD81 and SCARB1 have been
developed and evaluated both in cell culture and in vivo.
Moreover, inhibitors of kinases and host cell pathways in-
volved in HCV entry such as the EGFR17 or NPC1L118 have
been evaluated in vitro and promising results have been
obtained in mouse models.

The Viroporin p7
The viral protein p7 is composed of two transmembrane
segments that are connected by a cytoplasmic loop. P7 resides
in the ER and is part of a multiprotein complex containing E1,
E2, and NS2.27 Cryo electron microscopy and more recently,
nuclear magnetic resonance-based studies revealed that p7
forms hexameric complexes.131–133 Owing to this property
and its ion channel activity, p7 is classified as a viroporin
together with influenza virus M2 and HIV-1 vpu.134 Although
p7 is crucial for assembly and release of infectious virions in
cell culture and is indispensable for formation of infectious
particles in the chimpanzee animalmodel, its exact role in the
HCV life cycle is not completely clear.135,136However, a recent
study provided evidence that p7 is required for assembly of
nucleocapsids and their envelopment.20

Based on the fact thatM2 of influenza virus can be blocked
by amantadine and rimantadine, antiviral efficacy of these
compounds against HCV has been tested. However, results are
conflicting. Although some studies reported antiviral efficacy
of amantadine and rimantadine against HCV, others did not
observe this effect, at least when using concentrations that
did not exert cytotoxicity.134 In agreement with the limited
antiviral activity observed in vitro, clinical trials revealed
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little, if any, benefit of amantadine given with SOC as com-
pared with SOC alone.137–139

NS4B
NS4B displays a complex structure with two amphipathic
helices in the amino-terminal region, four predicted trans-
membrane segments and a putative palmitoylation site at the
carboxy-terminus.19 Interestingly, NS4B most likely under-
goes a complex posttranslational conformational change by
which the amino-terminal helices translocate through the
membrane, giving rise to a protein that has an amino-termi-
nal helix in the ER lumen and a total of five transmembrane
segments. This membrane slippage appears to be regulated
by NS5A.140 The complex membrane topology might allow
NS4B to form multiple in-membrane interactions including
self-interactions that are required for membrane remodeling
and thus, RNA replication.141,142 For a long time it was
thought that NS4B is the main driver of the MW. However,
recent studies have shown that DMVs are induced by NS5A
and a concerted action of all HCV replicase factors is required
for web formation.23 Thus, NS4B appears to be one of several
viral components contributing to MW biogenesis. Besides its
membrane remodeling capacity, NS4B can also bind to the 3′-
NTR of negative strand HCV RNA.143Whether NS4B is directly
involved in HCV RNA replication is not yet known, but it likely
has important roles in assembly and release of infectious
particles.142,144

Inhibition of NS4B function with respect to RNA replica-
tion has been achieved by two classes of compounds. The first
one is represented by clemizole hydrochloride that interferes
with NS4B-RNA interaction and might impair NS4B function
in RNA-replication and virus assembly/release. Resistance
mutations map to NS4B, but interestingly also to the 5′-
NTR.143 The second class of NS4B inhibitors comprises small
molecules preventing proper membrane association and
thus, MW formation and/ or induce NS4B aggregation.145–147

Silibinin is a substance that is primarily given to patients
with intoxications of amatoxins, but has also been used for
treatment of chronic hepatitis C. Interestingly, in some cases
virus elimination has been achieved even with silibinin.148

Especially difficult to treat patients showed improved viro-
logical response upon Silibinin therapy in combination with
SOC.149,150 Numerous mechanisms underlying the antiviral
effect of silibinin have been described, including interference
with HCV entry,151,152 destabilization of core and NS5A,153

blockade of virus production, or interference with cell-to-cell
spread151 (reviewed in154). Moreover, it was reported that
silibinin A, silibinin B and the related compound Legalon SIL
inhibit RdRp activity of NS5B.155 Interestingly, a recent study
described mutations in NS4B that confer partial resistance to
Legalon SIL in vitro.156 Moreover, mutations residing in NS4B
were also detected in a patient with viral breakthrough under
silibinin therapy, thus supporting the in vitro data. To identify
the molecular mechanism, biochemical studies were con-
ducted; they suggest that silibininmight target an interaction
between the NS3/4A complex and NS4B. Consistent with the
important role of NS4B forMW formation, silibinin treatment
induced aberrations of remodeled membranes, which was

not the case with a silibinin-resistant isolate.156 These results
suggest that NS4B is a target of silibinin and they are consis-
tent with mathematical modeling studies showing potent
interference of silibinin with virus production and only
moderate effects on HCV entry.157

Conclusions

Although we are not yet at the end of the road, therapy of
chronic hepatitis C can now be considered a success story.
Since the original description of the virus around 25 years ago,
major progress has been made in our understanding of the
viral life cycle, which ultimately defined the prime targets for
antiviral therapyand laid the ground fordevelopmentof highly
potent DAAs. The high rate of virus elimination that can be
achieved in clinical trials with the most recent generation of
DAAs even in IFN-sparing regimens is unprecedented and on
one hand the result of hard work to develop the most potent
antiviral, but on the other hand also due to the biology of this
virus. Key features facilitating virus clearance under therapy
are the very short half-life of HCV, which has to be compen-
sated by high reproduction rate and the absence of stable
“latency” reservoirs. Asmuch asweknow,HCVcanonly persist
when sustaining high-level replication and is unable to stably
“archive” drug-resistant variants, which makes the virus par-
ticularly vulnerable to highly active DAAs. As we have learned
from HIV, drug resistance can be overcome by combination
therapy and in the case of HCV, an amazing arsenal of DAAs
with different targets is in late stage clinical development or
has just been approved. These include NIs targeting NS5B,
second-generation protease and highly potent NS5A inhibitors
as well as cyclophilin blockers. Many of these DAAs have pan
genotypic activity and moderate to very high barrier to resis-
tance. Moreover, drug administration is improved by more
favorable pharmacokinetics and side effects are significantly
reduced. These developments will revolutionize the therapy of
chronic hepatitis C to the benefit of patients.
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