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Introduction

The relevance of gem-dihydroperoxides to peroxidic anti-
malarial agents stimulated initial interest in this class of
compounds.1–5 Apart from their biological activities,6,7

gem-dihydroperoxides have been established as important
building blocks in synthetic chemistry, for example the
preparation of organic peroxides, trioxanes, tetraoxanes,
spirobisperoxyketals, and dicarboxylic diesters.4,7,8 gem-
Dihydroperoxides can also be employed as oxidizing
agents under various conditions to perform transforma-
tions such as epoxidation1–5 and sulfoxidation.2–5,9 In ad-
dition, in situ decomposition of gem-dihydroperoxides
can generate singlet oxygen as the active oxidant8,10 in
olefin oxidation, for example.11 The ability of gem-dihy-
droperoxides to generate radicals allows them to be fur-
thermore exploited as radical initiators,2–5 for example
methyl ethyl ketone peroxide is used in the manufacturing

of acrylic resins, reinforced plastics, and unsaturated
polyester resins.6 

Itoh and co-workers established two catalyst-free prepar-
ative protocols for gem-dihydroperoxides, of which the
one employs hydrogen peroxide12 as terminal oxidant and
the other molecular oxygen.13,14 The latter is achieved in
combination with a photosensitizer (anthracene13 or
anthraquinone14) and exposure of the reaction mixture to
light. 

Reaction times can generally be reduced upon introduc-
tion of a catalyst, amongst which molecular iodine15

as well as numerous transition-metal Lewis acids have
proven effective.4,5,8,16,17 Brønsted acids are comparably
active as either homogeneous (sulfuric acid3) or heteroge-
neous catalysts, for example silica-sulfuric acid2 or triflic-
acid-functionalized silica-coated ferromagnetic nanopar-
ticles.18 

Abstracts

(A) Dussault and co-workers19 prepared primary and secondary al-
kyl hydroperoxides in moderate to high yields (48–79%) via double
alkylation of 1,1-dihydroperoxides, followed by acid-catalyzed hy-
drolysis of the resulting strained cyclic alkylated gem-bishydroper-
oxides (bisperoxyacetals). 

(B) 1-Hydroxy-1′-alkoxyperoxides were prepared by Terent’ev et
al.6 in moderate yield (40–64%) through iodine-catalyzed cross-cou-
pling of gem-bishydroperoxides and acetals. This cross-coupling is
also effective upon substitution of the acetal with an enol ether.

(C) Symmetrical and asymmetrical tetraoxanes can be prepared
from gem-dihydroperoxides. The combination of a gem-dihydroper-
oxide and its carbonyl analogue in the presence of fluoroboric acid
and hydrogen peroxide favors formation of symmetrical tetra-
oxanes.20 Similarly, asymmetrical tetraoxanes are obtained when
two non-identical carbonyl compounds are introduced.7 
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(D) Jakka et al.1 reported the epoxidation of various α,β-unsaturated
ketones utilizing cyclohexylidene-bishydroperoxide as a stoichio-
metric oxidant under Weitz–Scheffer reaction conditions (aqueous,
alkaline).

(E) Sulfoxidation of thiophenol ethers can be achieved under neutral
conditions at ambient temperature, producing sulfoxides in high
yields (79–93%) in less than two hours.9 

(F) Subsequent to observing the oxidation of triphenylphosphine to
triphenylphosphine oxide in the presence of 1,1-dihydroperoxy-
cyclododecane, Sekine and co-workers21 prepared oligodeoxyribo-
nucleotides in a similar fashion via the oxidation of phosphite
intermediates to their respective phosphate analogues.

(G) Dussault and co-workers reported the liberation of singlet oxy-
gen when monoactivated gem-dihydroperoxide derivatives were ex-
posed to anhydrous alkaline conditions.22 If this degradation is
performed in the presence of an organic substrate, an oxidative trans-
formation of the substrate is observed.10 This protocol also allows
for oxidative cleavage of olefinic substrates to yield aldehydes or
ketones in moderate to high yields (35–82%).11 
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