Synlett 2014; 25(13): 1827-1830
DOI: 10.1055/s-0034-1378332
letter
© Georg Thieme Verlag Stuttgart · New York

Direct Access to Fluorinated Thiadiazolo[3,2-a]pyrimidin-7-one Systems

Laurence Silpa
Laboratoire d’Infectiologie et Santé Publique (UMR Université François Rabelais/INRA 1282), Université François Rabelais, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Fax: +33(2)47367073   Email: mohamed.abarbri@univ-tours.fr
,
Julien Petrignet
Laboratoire d’Infectiologie et Santé Publique (UMR Université François Rabelais/INRA 1282), Université François Rabelais, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Fax: +33(2)47367073   Email: mohamed.abarbri@univ-tours.fr
,
Mohamed Abarbri*
Laboratoire d’Infectiologie et Santé Publique (UMR Université François Rabelais/INRA 1282), Université François Rabelais, Faculté des Sciences, Parc de Grandmont, 37200 Tours, France   Fax: +33(2)47367073   Email: mohamed.abarbri@univ-tours.fr
› Author Affiliations
Further Information

Publication History

Received: 03 March 2014

Accepted after revision: 23 May 2014

Publication Date:
08 July 2014 (online)


Abstract

A mild, simple method for the regioselective synthesis of thiadiazolo[3,2-a]pyrimidin-7-ones bearing a perfluoroalkyl group is reported. In order to study the core reactivity, various nucleophile substitutions were performed involving the reactive carbon–bromide bond via a one-pot strategy.

 
  • References and Notes

    • 1a Glennon RA, Rogers ME, Smith JD, El-Said MK, Egle JL. J. Med. Chem. 1981; 24: 658
    • 1b Glennon RA, Tejani-Butt SM, Padgett W, Daly JW. J. Med. Chem. 1984; 27: 1364
    • 1c Katritzky AR, Caster KC, Maren TH, Conroy CW, Bar-Ilan A. J. Med. Chem. 1987; 30: 2058
  • 2 Clare BW, Supuran CT. Eur. J. Med. Chem. 2000; 35: 859
  • 3 Lee BH, Clothier MF, Dutton FE, Conder GA, Johnson S. Bioorg. Med. Chem. Lett. 1998; 8: 3317
  • 4 Coburn RA, Glennon RA. J. Med. Chem. 1974; 17: 1025
  • 5 Kuderna JG, Skiles RD, Pilgram K. J. Org. Chem. 1971; 36: 3506
    • 6a Okabe T, Maekawa K, Taniguchi E. Agric. Biol. Chem. 1973; 37: 1197
    • 6b Tsuji T, Takenaka K. Bull. Chem. Soc. Jpn. 1982; 55: 637
    • 6c Safarov S, Kukaniev MA, Kolshorn H, Meier H. J. Heterocycl. Chem. 2005; 42: 1105
    • 7a Shafiee A, Lalezari I. J. Heterocycl. Chem. 1975; 12: 675
    • 7b Daneshtalab M, Motamedi K. J. Heterocycl. Chem. 1980; 17: 785
    • 7c Sahu JK, Dehuri SN, Naik S, Nayak A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1984; 23: 117
    • 7d Russo F, Santagati A, Santagati M. J. Heterocycl. Chem. 1985; 22: 297
  • 8 Lauer RF, Zenchoff G. J. Heterocycl. Chem. 1976; 13: 291
  • 9 Doad GJ, Okor DI, Scheinmann F. J. Chem. Soc., Perkin Trans. 1988; 1: 2993
    • 10a Santagati A, Santagati M, Russo F, Ronsivalle G. J. Heterocycl. Chem. 1988; 25: 949
    • 10b Tsuji T. J. Heterocycl. Chem. 1991; 28: 489
    • 10c Ashutosh S, Ashutosh N. J. Indian Chem. Soc. 2005; 82: 727
  • 11 Harriman GC. B, Chi S, Zhang M, Crowe A, Bennett RA, Parsons I. Tetrahedron Lett. 2003; 44: 3659
    • 12a Prié G, Thibonnet J, Abarbri M, Duchêne A, Parrain J.-L. Synlett 1998; 839
    • 12b Thibonnet J, Prié G, Abarbri M, Duchêne A, Parrain J.-L. Tetrahedron Lett. 1999; 40: 3151
    • 13a Carcenac Y, Zine K, Kizirian J.-C, Thibonnet J, Duchêne A, Parrain J.-L, Abarbri M. Adv. Synth. Catal. 2010; 352: 949
    • 13b Zine K, Petrignet J, Thibonnet J, Abarbri M. Synlett 2012; 23: 755
  • 14 Petrignet J, Silpa L, Thiery E. Synthesis 2014; 46: 947
  • 15 Typical Experimental Procedure for the Preparation of 6b Ethyl 4,4,4-trifluorobutynoate (5a, 980 mg, 5.80 mmol) was added dropwise to a solution of 4b (700 mg, 3.88 mmol) in MeOH (40 mL) at r.t. The mixture was stirred vigorously overnight before adding an extra 0.4 equiv of 5a. The mixture was allowed to stir for 24 h at r.t. The solvent was evaporated under reduced pressure, and the solid was washed with Et2O affording 520 mg (44%) of 6b as a brown solid; mp 186–188 °C. IR (neat): 3065, 2059, 1642, 1519–1447 cm–1. 1H NMR (300 MHz, CDCl3): δ = 6.670 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 111.2 (q, J = 3.6 Hz), 118.1 (q, J = 273.3 Hz), 133.5, 136.4 (q, J = 38.5 Hz), 164.5, 165.1. 19F NMR (282 MHz, CDCl3): δ = –67.70 (s). ESI-HRMS: m/z calcd for C6H2BrF3N3OS [M + H]+: 299.90540; found: 299.90486.
  • 16 Typical Experimental Procedure for the Preparation of 7a To a solution of compound 4b (200 mg, 1.1 mmol) in MeOH (20 mL) was gradually added the activated alkyne 5a (237 mg, 1.43 mmol). The solution was stirred at r.t. overnight before incorporating another 0.3 equiv of 5. The mixture was allowed to stand at r.t. for 24 h. Once the reaction was complete, allylamine (130 mg, 2.2 mmol) was then added dropwise. The mixture was vigorously stirred and monitored using TLC (SiO2, EtOAc–PE = 6:4) until the reaction was complete. MeOH was removed in vacuo. The solid was washed with Et2O, then filtered to provide 97 mg (32%) of 7a as a white solid; mp 260 °C. IR (neat): 3065, 2059, 1640, 1573, 1518–1447 cm–1. 1H NMR (300 MHz, DMSO-d 6): δ = 3.87 (d, J = 5.1 Hz, 2 H), 5.16–5.30 (m, 2 H), 5.84–5.93 (m, 1 H), 6.59 (s, 1 H), 8.48 (br s, 1 H). 13C NMR (75 MHz, DMSO-d 6): δ = 46.0, 109.6, 117.6, 119.0 (q, J = 272.4 Hz), 133.3, 135.5 (q, J = 36.7 Hz), 157.0, 162.8, 166.1. 19F NMR (282 MHz, DMSO-d 6): δ = –67.12. ESI-HRMS: m/z calcd for C9H8F3N4OS [M + H]+: 277.03709; found: 277.03626.