Synlett 2014; 25(17): 2415-2428
DOI: 10.1055/s-0034-1378450
account
© Georg Thieme Verlag Stuttgart · New York

Alkynyl Silyl Sulfides as Versatile Thioketene Equivalents

Carsten Spanka
a   Novartis Institutes for BioMedical Research, Forum 1, Novartis Campus, CH-4056 Basel, Switzerland
,
Ernst Schaumann*
b   Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678 Clausthal-Zellerfeld, Germany   Fax: +49(5323)722858   Email: Ernst.schaumann@tu-clausthal.de
› Author Affiliations
Further Information

Publication History

Received: 25 April 2014

Accepted after revision: 10 June 2014

Publication Date:
15 September 2014 (online)


Dedicated to the memory of Alessandro degl’Innocenti[1]

Abstract

This account covers the chemistry of alkynyl silyl sulfides and their use as substitutes for aldothioketenes. In contrast to the latter heterocumulenes, which can only be prepared and used in situ, many alkynyl silyl sulfides are stable at room temperature. Exceptions are bissilylated derivatives that are capable of rearranging to form the corresponding thioketenes. This reaction is promoted thermally or by the addition of silyl-accepting Lewis bases, but is suppressed by bulky S-silyl substituents. The reactivity of the highly electrophilic alkynyl silyl sulfides is comparable to that of the corresponding ketenes and thioketenes. Nucleophiles usually add to the alkyne α-carbon atoms to give, after desilylation, thiocarbonyl compounds. Particularly useful are the reactions with amines, imines, or ynamines, which give thioamides, β-thiolactams, and cyclobutenethiones, respectively. These transformations proceed under mild conditions and provide access to derivatives that could not previously be prepared by classical means. The scope of the [2+2]-cycloaddition reaction with imines to give β-thiolactams can be expanded by using Lewis acid catalysts, particularly zinc iodide. The mechanism of this reaction has been elucidated by careful characterization of byproducts. Further modifications of the β-thiolactams prepared by this methodology are also described. Reactions of alkynyl silyl sulfides with cyclic imines lead to bicyclic systems that can be considered as thio analogues of the core structures of β-lactam antibiotics. However, there is a competition from the ring-expansion reaction to form seven-membered thiolactams and di­thiolactones.

1 Introduction

2 Synthesis of Alkynyl Silyl Sulfides

3 Reactions

3.1 Thioacylation of Amines

3.2 [2+2]-Cycloaddition Reactions with Azomethines

3.3 Cycloaddition Reactions with (Thio)imidates

3.4 Cycloaddition Reactions with Ynamines

4 Conclusions

 
  • References

  • 1 Deceased: May 12th, 2012.
  • 2 Staudinger H. Die Ketene . Verlag Ferdinand Enke; Stuttgart: 1912
    • 3a Tidwell TT. In Science of Synthesis . Vol. 23. Danheiser RL. Thieme; Stuttgart: 2006: 15
    • 3b Allen AD, Tidwell TT. Chem. Rev. 2013; 113: 7287
    • 4a Schaumann E. Tetrahedron 1988; 44: 1827
    • 4b Spanka C, Schaumann E. In Science of Synthesis . Vol. 23. Danheiser RL. Thieme; Stuttgart: 2006: 735
    • 5a Schaumann E. Chem. Ber. 1982; 115: 2755
    • 5b Raasch MS. J. Org. Chem. 1970; 35: 3470
    • 5c Raasch MS. J. Org. Chem. 1972; 37: 1347
    • 5d Raasch MS. J. Org. Chem. 1978; 43: 2500
  • 6 Schaumann E, Behrens U. Angew. Chem. 1977; 89: 750 ; Angew. Chem. Int. Ed. Engl. 1977, 16, 722
  • 7 Behr H, Bolte O, Dräger G, Ries M, Schaumann E. Liebigs Ann. Chem. 1996; 1295
  • 8 Ando W. Rev. Heteroat. Chem. 1988; 1: 235
  • 9 Schaumann E, Wriede U, Adiwidjaja G. Chem. Ber. 1984; 117: 2205
  • 10 Schaumann E, Behr H, Adiwidjaja G, Tangerman A, Lammerink BH. M, Zwanenburg B. Tetrahedron 1981; 37: 219
  • 11 Schaumann E, Scheiblich S, Wriede U, Adiwidjaja G. Chem. Ber. 1988; 121: 1165
  • 12 Petrov ML, Belyakov AV. Tetrahedron Lett. 2003; 44: 599
    • 13a Brandsma L. Recl. Trav. Chim. Pays-Bas 1968; 87: 38
    • 13b Sukhai RS, de Jong R, Brandsma L. Synthesis 1977; 888
    • 13c Androsov DA. J. Org. Chem. 2008; 73: 8612
  • 14 Androsov DA, Neckers DC. J. Org. Chem. 2007; 72: 5368
    • 15a D’hooge B, Smeets S, Toppet S, Dehaen W. J. Chem. Soc., Chem. Commun. 1977; 1753
    • 15b Petrov ML, Dehaen W, Abramov MA, Abramova IP, Androsov DA. Abramov M. A. Russ. J. Org. Chem. (Engl. Transl.) 2002; 38: 1510
    • 15c Dehaen W, D’hooge B, Petrov ML, Smeets S, Toppet S, Voets M. Tetrahedron 2000; 56: 3933
  • 16 Sugiyama H, Hayashi Y, Kawaguchi H, Tatsumi K. Inorg. Chem. 1998; 37: 6773
  • 17 Takimiya K, Morikami A, Otsubo T. Synlett 1997; 319
  • 18 Wang Y, Zhang W.-X, Wang Z, Xi Z. Angew. Chem. 2011; 123: 8272 ; Angew. Chem. Int. Ed. 2011, 50, 8122
    • 19a Sukhai RS, Meijer J, Brandsma L. Recl. Trav. Chim. Pays-Bas 1977; 96: 179
    • 19b Schaumann E, Grabley F.-F. Chem. Ber. 1980; 113: 3024
    • 19c Förster W.-R, Isecke R, Spanka C, Schaumann E. Synthesis 1997; 942
    • 20a Harris SJ, Walton RM. J. Chem. Soc., Chem. Commun. 1976; 1008
    • 20b Harris SJ, Walton RM. J. Organomet. Chem. 1977; 127: C1
  • 21 Förster, W.-R.; Schaumann, E. unpublished results.
  • 22 Isecke R. Ph.D. Thesis. University of Hamburg; Germany: 1987
  • 23 Weber, K.; Schaumann, E. unpublished results.
  • 24 Schaumann E, Lindstaedt J, Förster W.-R. Chem. Ber. 1983; 116: 509
  • 25 Spanka, C.; Schaumann, E. unpublished results.
  • 26 Raap R. Can. J. Chem. 1968; 46: 2251
  • 27 Malek-Yazdi F, Yalpani M. Synthesis 1977; 328
  • 28 Petrov ML, Shchipalkin AA, Kuznetsov VA, Viktorov BN. Russ. J. Org. Chem. (Engl. Transl.) 2010; 46: 1214
  • 29 Lindstaedt, J.; Schaumann E. unpublished results.
    • 30a Schaumann E. In Comprehensive Organic Synthesis . Vol. 6. Trost BM, Fleming I. Pergamon; Oxford: 1990: 419
    • 30b Schaumann E. In Comprehensive Organic Synthesis II . Vol. 6. Knochel P, Molander GA. Elsevier; Oxford: 2014: 411
  • 31 Sukhai R, Brandsma L. Synthesis 1979; 455
  • 32 Arens JF, Volger HC, Doornbos T, Bonnema J, Greidanus JW, van den Hende JH. Recl. Trav. Chim. Pays-Bas 1956; 75: 1459
  • 33 Kirsch, C.; Schaumann. E. unpublished results.
  • 36 Nieschalk J, Schaumann E. Liebigs Ann. Chem. 1996; 141
  • 37 Tsang WY, Dhanda A, Schofield CJ, Page MI. J. Org. Chem. 2004; 69: 339
  • 38 Palena AA. P, Mata EG. ARKIVOC 2005; (xii): 282
  • 39 Méndez L, Delpiccolo CM. L, Mata EG. Synlett 2005; 156
  • 40 Awasthi C, Yadav LD. S. Synlett 2010; 1783
  • 41 Schaumann E, Nieschalk J, Isecke R, Spanka C, Mrotzek H, Förster W.-R. Phosphorus, Sulfur Silicon Relat. Elem. 1997; 120–121: 349
  • 42 Mangelinckx S, Van Speybroeck V, Vansteenkiste P, Waroquier M, De Kimpe N. J. Org. Chem. 2008; 73: 5481
  • 43 Crystallographic data have been deposited with the accession number CCDC 773107 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.
  • 44 See ref. 43: accession number 799017.
  • 45 See ref. 43: accession number 799018.
  • 46 Nieschalk J, Spanka C, Schaumann E. Liebigs Ann. Chem. 1996; 135
  • 47 See ref. 43: accession number 780444.
  • 48 See ref. 43: accession number 863716.
  • 49 Stoodley RJ. Tetrahedron 1975; 31: 2321
  • 50 Fahey JL, Lange BC, van der Veen JM, Young GR, Bose A. J. Chem. Soc., Perkin Trans. 1 1977; 1117
  • 51 Matlin SA, Chan L. J. Chem. Soc. Chem. Commun. 1980; 798
  • 52 Schaumann E, Förster W.-R, Adiwidjaja G. Angew. Chem. 1984; 96: 429 ; Angew. Chem. Int. Ed. Engl. 1984, 23, 439
  • 53 Müller M, Förster W.-R, Holst A, Kingma AJ, Schaumann E, Adiwidjaja G. Chem. Eur. J. 1996; 2: 949