Synlett 2014; 25(15): 2208-2212
DOI: 10.1055/s-0034-1378523
letter
© Georg Thieme Verlag Stuttgart · New York

A Greener Approach for the Regioselective Synthesis of Multifunctionalized Indolylpyrrole and Indolyltriazolylpyrrole Hybrids via Michael Addition of α-Azido Ketones

Jayabal Kamalraja
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu, India   Fax: +91(44)24911589   Email: ptperumal@gmail.com
,
Ramachandran Sowndarya
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu, India   Fax: +91(44)24911589   Email: ptperumal@gmail.com
,
Paramasivan Thirumalai Perumal*
Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu, India   Fax: +91(44)24911589   Email: ptperumal@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 07 May 2014

Accepted after revision: 20 June 2014

Publication Date:
31 July 2014 (online)


Abstract

A convergent synthesis of indolylpyrrole derivatives has been developed from domino coupling of α-azido ketones, aromatic aldehydes, and 3-cyanocetylindoles in the presence of piperidine in aqueous medium at 80 °C via cascade Knoevenagel condensation–Michael addition–annulation in excellent yields. Further, the synthesized ortho-azidoindolylpyrroles undergo [3+2] cycloaddition with phenyl acetylene to give indolyltriazolylpyrrole hybrids in good yields. This domino transformation, efficiently generates C–C and C–N bonds in a minimum of synthetic steps resulting in three important bioactive heterocyclic frameworks, indole–pyrrole–triazole hybrids.

Supporting Information

 
  • References and Notes

    • 2a For the first discussion of the ‘on-water reaction’ concept, see: Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275

    • For reviews of the synthetic applications of ‘on-water’ chemistry, see:
    • 2b Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 2c Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 2d Lindström UM. Chem. Rev. 2002; 102: 2751
    • 3a Jones RA. Pyrroles. Wiley; New York: 1992. Part II
    • 3b Trofimov BA, Sobenina LN, Demenev AP, Mikhaleva AI. Chem. Rev. 2004; 104: 2481
    • 3c Bellina F, Rossi R. Tetrahedron 2006; 62: 7213
    • 4a Thompson RB. FASEB J. 2001; 15: 1671
    • 4b Laderoute KR, Calaoagan JM, Madrid PB, Klon AE, Ehrlich PJ. Cancer Biol. Ther. 2010; 10: 68
    • 5a Brenelli EC. S, Fernandes JL. N. Tetrahedron: Asymmetry 2003; 14: 1255
    • 5b Wallner SR, Lavandera I, Mayer SF, Ohrlein R, Hafner A, Edegger K, Faber K, Kroutil W. J. Mol. Catal. B: Enzym. 2008; 55: 126
  • 6 Benaissa T, Hamman S, Beguin CG. J. Fluorine Chem. 1988; 38: 163
  • 7 Nakajima M, Loeschorn CA, Cimbrelo WE, Anselme JP. Org. Prep. Proced. Int. 1980; 12: 265
  • 8 Marco JL, Martinez-Grau A, Martin N, Seoane C. Tetrahedron Lett. 1995; 36: 5393
    • 9a Langer P, Freifeld I, Shojaei H. Chem. Commun. 2003; 3044
    • 9b Freifeld I, Shojaei H, Langer P. J. Org. Chem. 2006; 71: 4965
    • 9c Freifeld I, Shojaei H, Dede R, Langer P. J. Org. Chem. 2006; 71: 6165
    • 10a Hantzsch A. Ber. Dtsch. Chem. Ges. 1890; 23: 1474
    • 10b Knorr L. Ber. Dtsch. Chem. Ges. 1884; 17: 1635
    • 10c Paal C. Ber. Dtsch. Chem. Ges. 1885; 18: 367
  • 11 Dieter RK, Yu H. Org. Lett. 2000; 2: 2283
    • 12a Ln X, Mao Z, Dai X, Lu P, Wang Y. Chem. Commun. 2011; 47: 6620
    • 12b Yan RL, Luo J, Wang CX, Ma CW, Huang GS, Liang YM. J. Org. Chem. 2010; 75: 5395
    • 12c Khalili B, Jajarmi P, Eftekhari-Sis B, Hashemi MM. J. Org. Chem. 2008; 73: 2090
    • 12d Liu X, Hao L, Lin M, Chen L, Zhan Z. Org. Biomol. Chem. 2010; 8: 3064
    • 12e Bharadwaj AR, Scheidt KA. Org. Lett. 2004; 6: 2465
    • 12f Cyr DJ. S, Martin N, Arndtsen BA. Org. Lett. 2007; 9: 449
    • 12g Fontaine P, Masson G, Zhu J. Org. Lett. 2009; 11: 1555
    • 12h Freifeld I, Shojaei H, Langer P. J. Org. Chem. 2006; 71: 4965
  • 13 Babu TH, Kamalraja J, Muralidharan D, Perumal PT. Tetrahedron Lett. 2011; 52: 4093
  • 14 Kamalraja J, Babu TH, Muralidharan D, Perumal PT. Synlett 2012; 23: 1950
  • 15 General Procedure for the Synthesis of 5-Aroyl-2-(1H-indol-3-yl)-4-aryl-1H-pyrrole-3-carbonitrile Derivatives 4 To a stirred mixture of aromatic aldehydes 1 (1.0 mmol), 2-(1H-3-indolylcarbonyl)-3-aryl-2-propenenitriles 2 (1.0 mmol) and phenacylazide 3 (1.0 mmol) in H2O (3 mL), piperidine (0.25 mmol) was added at 80 °C. The turbid solution slowly turned into a clear solution, followed by the formation of solid after the time specified in Table 2. After completion of the reaction as indicated by TLC, the solid was filtered and washed with PE–EtOAc mixture (1:1 ratio, v/v, 5 mL) to give pure compound 4, which was recrystallized from EtOH to yield yellow crystals. Yellow solid; yield 93%; mp 244–246 °C. 1H NMR (500 MHz, DMSO-d 6): δ = 2.21 (s, 3 H, CH3), 6.98 (d, J = 7.5 Hz, 2 H, ArH), 7.11 (d, J = 7.5 Hz, 2 H, ArH), 7.19 (q, J = 7.5 Hz, 3 H, ArH), 7.25 (t, J = 7.5 Hz, 1 H, ArH), 7.37 (t, J = 7.5 Hz, 1 H, ArH), 7.51–7.55 (m, 3 H, ArH), 7.87 (d, J = 7.5 Hz, 1 H, ArH), 7.93 (d, J = 2.0 Hz, 1 H, ArH), 11.82 (s, 1 H, D2O exchangeable, NH), 12.74 (s, 1 H, D2O exchangeable, NH). 13C NMR (125 MHz, DMSO-d 6): δ = 21.2, 92.6, 104.6, 122.7, 117.3, 120.4, 120.5, 122.7, 125.1, 127.4, 127.9, 128.3, 129.0, 129.6, 129.7, 130.1, 132.3, 135.3, 136.7, 137.3, 138.0, 139.8, 139.8, 186.3.
  • 16 Boyer JH, Canter FC. Chem. Rev. 1954; 54: 1
  • 17 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
  • 18 For a review on copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis, see: Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
  • 19 1,3-Dipolar Cycloaddition Chemistry . Vol. 1. Huisgen R, Padwa AI. Wiley; New York: 1984: 1
    • 20a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 20b Rostovtsev VV, Green LG, Fokin VV, Sharpless B. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 21 General Procedure for the Synthesis of Indolyltriazolylpyrroles 5 To a stirred suspension of (4-methylphenyl)acetylene (1.2 mmol) and CuI (20 mol%) in t-BuOH–H2O (1:1, 10 mL), was added the azidopyrrole (1.0 mmol) and stirring continued for the specified time (Table 0). After reaction was complete, as indicated by TLC, the mixture was filtered through a bed of Celite to remove CuI, the filtrate was diluted with H2O (30 mL) and extracted with EtOAc (3 × 15 mL). The combined organic layers were then dried (Na2SO4), filtered, and concentrated under vacuum to obtain the crude product which was washed with PE–EtOAc (4:1 ratio, v/v, 5 mL) to give pure 5, which was recrystallized from EtOH
  • 22 5-Benzoyl-2-(1H-indol-3-yl)-4-[2-(4-p-tolyl-1H-1,2,3-triazol-1-yl)phenyl]-1H-pyrrole-3-carbonitrile (5a) Yellow solid; yield 78%; mp 180–182 °C. 1H NMR (400 MHz, CDCl3): δ = 2.38 (s, 3 H, Me), 7.09–7.30 (m, 9 H, ArH), 7.35–7.42 (m, 3 H, ArH), 7.53–7.57 (m, 2 H, ArH), 7.69 (d, J = 7.2 Hz, 2 H, ArH), 7.77 (d, J = 7.6 Hz, 2 H, ArH), 7.98 (s, 1 H, ArH), 9.58 (s, 2 H, D2O exchangeable, NH). 13C NMR (100 MHz, CDCl3): δ = 21.3, 92.1, 104.3, 112.4, 116.1, 118.9, 121.4, 121.8, 123.2, 123.9, 124.9, 125.7, 125.9, 127.1, 127.6, 127.9, 128.3, 129.1, 129.2, 129.4, 129.7, 131.6, 131.8, 135.8, 136.1, 136.8, 138.4, 139.7, 147.3, 185.3. HRMS (EI): m/z calcd for C35H24N6O [M]+: 544.2012; found: 544.1200.
  • 23 Crystallographic data of compound 4a in this manuscript have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 893599. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: +44(1223)336033 or e-mail: deposit@ccdc.cam.ac.uk].