Synlett 2014; 25(16): 2345-2349
DOI: 10.1055/s-0034-1378546
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient and Facile Synthesis of Vinyl Sulfones via Microwave-Assisted Copper Triflate Catalyzed Hydrosulfonylation of Alkynes

Ganesh M. Shelke
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +91(1596)244183   Email: anilkumar@pilani.bits-pilani.ac.in
,
V. Kameswara Rao
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +91(1596)244183   Email: anilkumar@pilani.bits-pilani.ac.in
,
Kasiviswanadharaju Pericherla
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +91(1596)244183   Email: anilkumar@pilani.bits-pilani.ac.in
,
Anil Kumar*
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India   Fax: +91(1596)244183   Email: anilkumar@pilani.bits-pilani.ac.in
› Author Affiliations
Further Information

Publication History

Received: 19 May 2014

Accepted after revision: 29 June 2014

Publication Date:
26 August 2014 (online)


Abstract

An efficient method has been described for the synthesis of vinyl sulfones via hydrosulfonylation of alkynes using sodium arene sulfinates catalyzed by Cu(OTf)2 under microwave irradiation. A variety of vinyl sulfones was obtained in good to excellent (71–89%) yields and with high regio- and stereoselectivity. Shortened reaction times, simple reaction conditions and low catalyst loading are the salient features of this protocol.

Supporting Information

 
  • References and Notes

    • 1a Lebrun M.-E, Le Marquand P, Berthelette C. J. Org. Chem. 2006; 71: 2009
    • 1b Enders D, Müller SF, Raabe G, Runsink J. Eur. J. Org. Chem. 2000; 879
    • 1c Mauleón P, Alonso I, Rivero MR, Carretero JC. J. Org. Chem. 2007; 72: 9924
    • 1d Oishi S, Hatano K, Tsubouchi A, Takeda T. Chem. Commun. 2011; 47: 11639
    • 1e Murphy JJ, Quintard A, McArdle P, Alexakis A, Stephens JC. Angew. Chem. Int. Ed. 2011; 50: 5095
    • 2a Schneider KC, Benner SA. Tetrahedron Lett. 1990; 31: 335
    • 2b Freihammer PM, Detty MR. J. Org. Chem. 2000; 65: 7203
    • 2c Katritzky AR, Huang T.-B, Voronkov MV, Wang M, Kolb H. J. Org. Chem. 2000; 65: 8819
    • 2d Wang G, Mahesh U, Chen GY. J, Yao SQ. Org. Lett. 2003; 5: 737
    • 2e Meadows DC, Gervay-Hague J. Med. Res. Rev. 2006; 26: 793
    • 2f Simpkins NS. Tetrahedron 1990; 46: 6951
  • 3 Fuchs PL, Braish TF. Chem. Rev. 1986; 86: 903
    • 4a Hlasta DJ, Ackerman JH. J. Org. Chem. 1994; 59: 6184
    • 4b Huang DF, Shen TY. Tetrahedron Lett. 1993; 34: 4477
    • 4c de Lucchi O, Pasquato L. Tetrahedron 1988; 44: 6755
  • 5 Palmer JT, Rasnick D, Klaus JL, Bromme D. J. Med. Chem. 1995; 38: 3193
  • 6 Reddy PE, Reddy RM. V. PCT Int. Appl W09918068, 1999
  • 7 Konopa JK, Konieczny MT, Horowska BJ, Kunikowski AJ, Asao T, Nishino H, Yamada Y. Jpn. Patent JP9003037, 1997
  • 8 Dunny E, Doherty W, Evans P, Malthouse JP. G, Nolan D, Knox AJ. S. J. Med. Chem. 2013; 56: 6638
    • 9a Popoff IC, Dever JL, Leader GR. J. Org. Chem. 1969; 34: 1128
    • 9b Ley SV, Simpkins NS. J. Chem. Soc., Chem. Commun. 1983; 1281
  • 10 Ohnuma T, Hata N, Fujiwara H, Ban Y. J. Org. Chem. 1982; 47: 4713
    • 11a Hopkins PB, Fuchs PL. J. Org. Chem. 1978; 43: 1208
    • 11b Sinnreich J, Asscher M. J. Chem. Soc., Perkin Trans 1 1972; 1543
    • 11c Gancarz RA, Kice JL. Tetrahedron Lett. 1980; 21: 4155
  • 12 Huang X, Duan D, Zheng W. J. Org. Chem. 2003; 68: 1958
  • 14 Qian H, Huang X. Synlett 2001; 1913
  • 15 Guan Z.-H, Zuo W, Zhao L.-B, Ren Z.-H, Liang Y.-M. Synthesis 2007; 1465
    • 17a Khedar P, Pericherla K, Kumar A. Synlett 2014; 25: 515
    • 17b Shelke GM, Rao VK, Tiwari RK, Chhikara BS, Parang K, Kumar A. RSC Adv. 2013; 3: 22346
    • 17c Rao VK, Tiwari R, Chhikara BS, Shirazi AN, Parang K, Kumar A. RSC Adv. 2013; 3: 15396
    • 17d Pericherla K, Khungar B, Kumar A. Tetrahedron Lett. 2012; 53: 1253
  • 18 After our work had been completed, a completely independent report on Cu(OAc)2-catalyzed addition of sulfinates to alkynes appeared. See: Wei W, Li J, Yang D, Wen J, Jiao Y, You J, Wang H. Org. Biomol. Chem. 2014; 12: 1861
    • 20a Lu Q, Zhang J, Wei F, Qi Y, Wang H, Liu Z, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7156
    • 20b Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 20c Barun O, Ila H, Junjappa H, Singh OM. J. Org. Chem. 2000; 65: 1583
    • 21a Kondoh A, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2007; 129: 4099
    • 21b Kim S, Lee PH. J. Org. Chem. 2011; 77: 215
  • 22 Representative Procedure: Phenylacetylene (102 mg, 1 mmol), sodium benzene sulfinate (164 mg, 1 mmol), and Cu(OTf)2 (16 mg, 2.5 mol%) were added to a 10-mL microwave tube containing AcOH (2 mL) and a magnetic stirrer bar. The reaction mixture was placed in a CEM Discover BenchMate. The reaction parameters were set to 200 W, 250 psi, 110 °C for 5 min with stirring. After completion of the reaction, the reaction mixture was diluted with H2O (10 mL) and extracted with EtOAc (2 × 10 mL). The organic layer was dried with anhyd Na2SO4, filtered and the solvent evaporated on a rotary evaporator to give the crude product which was purified by passing through a silica column to give pure 3a (200 mg, 82%) as a white solid. Selected Spectroscopic Data: (E)-1-Methyl-3-[2-(phenylsulfonyl)vinyl]benzene (3c): yellow solid; mp 74–76 °C. 1H NMR (400 MHz, CDCl3): δ = 7.95–7.99 (m, 2 H), 7.68 (d, J = 15.4 Hz, 1 H), 7.61–7.65 (m, 1 H), 7.54–7.60 (m, 2 H), 7.29–7.33 (m, 3 H), 7.23–7.26 (m, 1 H), 6.87 (d, J = 15.4 Hz, 1 H), 2.37 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 142.71, 140.81, 138.87, 133.35, 132.31, 132.08, 129.34, 129.16, 128.99, 127.65, 127.00, 125.85, 21.28. IR (KBr): 3047, 2916, 1612, 1443, 1296, 1142 cm–1. HRMS: m/z [M + H]+ calcd for C15H15O2S: 259.0787; found: 259.0765. (E)-1-Ethyl-4-[2-(phenylsulfonyl)vinyl]benzene (3d): yellow solid; mp 95–96 °C. 1H NMR (400 MHz, CDCl3): δ = 7.95–7.99 (m, 2 H), 7.69 (d, J = 15.4 Hz, 1 H), 7.61–7.66 (m, 1 H), 7.54–7.59 (m, 2 H), 7.43 (d, J = 8.2 Hz, 2 H), 7.24 (d, J = 8.1 Hz, 2 H), 6.84 (d, J = 15.4 Hz, 1 H), 2.68 (q, J = 7.6 Hz, 2 H), 1.25 (t, J = 7.6 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 148.19, 142.63, 140.94, 133.31, 129.85, 129.33, 128.74, 128.67, 127.61, 126.10, 28.86, 15.31. IR (KBr): 3055, 2962, 1612, 1512, 1450, 1311, 1149 cm–1. HRMS: m/z [M + H]+ calcd for C16H17O2S: 273.0944; found: 273.0958. (E)-1-Fluoro-4-(2-tosylvinyl)benzene (3l): white solid; mp 95–96 °C. 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.3 Hz, 2 H), 7.64 (d, J = 15.4 Hz, 1 H), 7.46–7.52 (m, 2 H), 7.36 (d, J = 8.0 Hz, 2 H), 7.09 (t, J = 8.6 Hz, 2 H), 6.81 (d, J = 15.4 Hz, 1 H), 2.45 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 164.30 (d, J C–F = 252.8 Hz), 144.49, 140.61, 137.65, 130.56 (d, J C–F = 8.7 Hz), 130.02, 128.72 (d, J C–F = 3.4 Hz), 127.72, 127.41 (d, J C–F = 2.4 Hz), 116.31 (d, J C–F = 22.1 Hz), 21.64. IR (KBr): 3055, 1597, 1504, 1450, 1304, 1234, 1142 cm–1 . HRMS: m/z [M + H]+ calcd for C15H14FO2S: 277.0693; found: 277.0685. (E)-2-(2-Tosylvinyl)pyridine (3o): yellow solid; mp 98–99 °C. 1H NMR (400 MHz, CDCl3): δ = 8.62 (d, J = 3.9 Hz, 1 H), 7.85 (d, J = 8.3 Hz, 2 H), 7.74 (td, J = 7.7, 1.8 Hz, 1 H), 7.64 (d, J = 14.9 Hz, 1 H), 7.43 (dd, J = 13.5, 11.4 Hz, 2 H), 7.35 (d, J = 8.0 Hz, 2 H), 7.28–7.32 (m, 1 H), 2.44 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 151.11, 150.29, 144.61, 140.03, 137.25, 137.04, 132.15, 130.00, 127.94, 125.39, 124.94, 21.65. IR (KBr): 3040, 1620, 1589, 1435, 1311, 1142 cm–1 . HRMS: m/z [M + H]+ calcd for C14H14NO2S: 260.0740; found: 260.0725.