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Abstract The growing importance of fluorinated compounds in phar-
maceuticals, agrochemicals, and materials has triggered the develop-
ment of new methods for the introduction of fluorine into small mole-
cules. Although it is a challenge to prepare fluorinated compounds, new
developed reactions are addressing this challenge and facilitating the
synthesis of difluoromethylated arenes. In this article, we highlight re-
cently important developments in the synthesis of difluoromethylated
arenes.
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1 Introduction

The difluoromethyl group has received a great deal of
attention in medicinal chemistry because it is isosteric and
isopolar with the hydroxyl group and is found in various bi-
ologically active compounds (Figure 1).1 Generally, methods
for the synthesis of difluoromethylated arenes through de-
oxyfluorination of aldehydes or ketones suffer from poor
functional-group compatibility and require the use of ex-
pensive and toxic fluorinated reagents.2 Recent develop-
ments in organo- and transition-metal catalysis have al-
lowed new methods to prepare difluoromethylated arenes.3
Herein we highlight recent progress in the synthesis of di-
fluoromethylated arenes.

Figure 1  Representative drug and drug candidate containing CF2H 
functional group
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2 Cross-Coupling with Copper

Recently, Amii and co-workers reported a copper-cata-
lyzed cross-coupling and decarboxylation from aryl iodides
to prepare difluoromethylated arenes (Scheme 1, a).4 Al-
though cross-coupling with α-silyldifluoroacetates was
achieved under mild conditions, the decarboxylation step is
limited to electron-deficient aryl iodides and requires high
temperature (>170 °C). The copper-catalyzed cross-cou-
pling of ethyl ortho-iodobenzoates with bromozinc-difluo-
rophosphonates was reported by Zhang and co-workers.5
The benzoate ester directing group plays important roles,
and the features of this reaction are the high reaction effi-
ciency, excellent functional-group compatibility, and oper-
ational simplicity. Hartwig and co-workers presented a
one-step copper-mediated cross-coupling between iodo-
arenes and TMSCF2H (Scheme 1, b).6 Although the reaction
proceeds in high yields with good functional-group com-
patibility, the reaction requires a large excess amount of
TMSCF2H (5 equiv) and is limited to electron-rich and elec-
tron-neutral iodoarenes. These problems were addressed
successfully by Surya Prakash with n-Bu3SnCF2H as the di-
fluoromethyl pronucleophile (Scheme 1, c).7 The disadvan-
tages of the method are that the reaction requires high tem-
perature and n-Bu3SnCF2H is toxic. Shen and Lu developed a
copper-mediated ligandless aerobic fluoroalkylation of ar-
ylboronic acids under mild conditions to prepare difluoro-
methylated arenes.8 The reaction tolerates a wide range of
functional groups and can be easily scaled up. Recently,
Qing’s group reported a copper-mediated direct difluoro-
methylation of electron-deficient aryl iodides using 2.4
equivalents of TMSCF2H at room temperature (Scheme 1,
d).9 The mild reaction conditions make this method attrac-
tive for the synthesis of difluoromethylated arenes.

3 Cross-Coupling with Palladium

Early this year, Zhang and co-workers described a palla-
dium-catalyzed difluoroallylation of aryl boronic acid using
3-bromo-3,3-difluoropropene (Scheme 2, a).10 The reaction
proceeds with low catalyst loading, high regioselectivity,
and excellent functional-group compatibility. At the same
time, the authors also reported another palladium-cata-
lyzed difluoroalkylation of aryl boronic acid with bromodi-
fluoromethylphosphonate, bromodifluoroacetate, and fur-
ther derivatives, which provides a facile and useful access to
a series of functionalized difluoromethylated arenes.11 Qing
and co-workers reported a palladium-catalyzed directed
α-arylation of α,α-difluoro ketones with aryl bromides.12

The method provides an efficient and straightforward ac-
cess to a variety of difluoromethylated arenes with broad

substrate scope. The disadvantage of the method is that the
reaction required high temperature and high catalyst load-
ing. This problem was addressed successfully by Hartwig
and co-workers with an air- and moisture-stable palladacy-
clic complex as a catalyst, a broad range of electronically
varied aryl bromides and chlorides was used to provide di-
fluoromethylated arenes in high yields with low catalyst
loading and lower temperature (Scheme 2, b).13

Scheme 2  Formation of difluoromethylated arenes with palladium

Scheme 1  Difluoromethylation of (hetero)aryl iodides with copper
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4 Cross-Coupling with Other Metals

In 2012, Li and co-workers reported a silver-catalyzed
decarboxylative fluorination of aliphatic carboxylic acids
with Selectfluor under mild conditions.14 Using Li’s method,
the transformation of α-fluoroarylacetic acids into difluo-
romethylated arenes was achieved by Gouverneur and
co-workers (Scheme 3, a).15 This method allows for the
preparation of [18F]-labeled difluoromethylarenes using
[18F]-Selectfluor bistriflate. Inoue and co-workers reported
a cobalt-catalyzed cross-coupling reaction of arylzinc re-
agents with ethyl bromodifluoroacetate to form difluoro-
methylated arenes (Scheme 3, b).16 The reaction proceeds
under mild conditions and is applicable to various arylzinc
reagents to afford the corresponding ethyl aryldifluoroace-
tates.

Scheme 3  Formation of difluoromethylated arenes with other metals

5 C(sp2)–H Activation

Recently, directed ethoxycarbonyldifluoromethylation
of aromatic compounds with BrCF2CO2Et was reported us-
ing Cp2Fe by Testu Yamakawa and co-workers.17 Moreover,
the one-pot synthesis of 3,3-difluoro-2,3-dihydroindole-2-
one derivatives was achieved with para-substituted aniline
derivatives using this method. Baran and co-workers re-
ported a directed difluoromethylation of C–H bonds in het-
eroarenes with benchtop-stable Zn(SO2CF2H)2 (Scheme 4,
a).18 Shortly after, the authors developed other new re-
agents, such as sodium difluoroethylsulfinate, for the syn-
thesis of fluorinated heteroarenes.19 Early this year, Wang
and co-workers developed a new method for visible-light
photoredox difluoromethylation of electron-rich het-
eroarenes under mild conditions (Scheme 4, b).20 Mechanis-
tic investigation indicated that the reaction proceeds
through an electrophilic radical-type pathway.

Scheme 4  Formation of difluoromethylated arenes via C(sp2)–H acti-
vation

6 C(sp3)–H Activation

In 2013, Chen and co-workers reported a visible-light-
promoted metal-free C–H activation for the synthesis of di-
fluoromethylated arenes (Scheme 5, a).21 This is the first re-
port of selective C–H gem-difluorination. Shortly after, we
reported a silver-catalyzed oxidative activation of benzylic
C–H bonds to synthesize difluoromethylated arenes
(Scheme 5, b).22 With AgNO3 as the catalyst, the reaction of
a variety of methylated arenes with Selectfluor and Na2S2O8
in acetonitrile–water (v/v = 1:1) at 80 °C under nitrogen at-
mosphere led to the formation of the corresponding difluo-
romethylated arenes in 42–93% isolated yield.

Scheme 5  Formation of difluoromethylated arenes via C(sp3)–H acti-
vation

Some representative examples are shown in Scheme 6.
The mild reaction conditions generally tolerate diverse
functional groups on the aryl rings. Notably, the reaction is
amenable to gram-scale synthesis, proving the practicality
of our method. The preliminary mechanism studies indi-
cate that a radical-chain mechanism or single-electron
transfer (SET) may be involved in this transformation.
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Scheme 6  Silver-catalyzed benzylic C–H activation for the synthesis of 
difluoromethylated arenes by Tang and Xu (representative examples)

7 Conclusion

To summarize, significant advances have been made in
the synthesis of difluoromethylated arenes. Particularly, re-
cent advances have allowed innovative approaches for ben-
zylic C–H fluorination to prepare difluoromethylatd arenes.
However, some challenges still remain. Such as directed
introduction of the difluoromethyl group to arene through
C–H activation is still not efficient. New metal catalysts
such as iron are still required. These challenges are expect-
ed to stimulate further development in the synthesis of di-
fluoromethylated arenes.
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