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Abstract A low-cost and high-yielding synthetic route towards methyl
4-pentafluorosulfanylphenyl sulfoximines from the corresponding sul-
fide has been developed. The intermediate N-cyano sulfoximine was
converted into the corresponding N-(1H)-tetrazole, and the NH-sulfoxi-
mine was modified by N-arylation and N-alkylation reactions.

Key words building blocks, pentafluorosulfanyl group, sulfoximine,
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Fluorine-containing compounds exhibit unique physi-
cochemical properties and, consequently, they are of inter-
est in medicinal chemistry, crop protection, and material
sciences.1 In this context, the pentafluorosulfanyl group
(SF5), also known as ‘super-trifluoromethyl’ group, plays a
very special role.1,2 Noteworthy are, for example, the high
thermal stability of aryl sulfurpentafluorides and the
chemical inertness of the SF5 group towards hydrolysis.3
Compared with a trifluoromethyl substituent, the SF5 group
has a higher electronegativity4 and polarity, and the respec-
tive molecules show improved lipophilicity.5 As a result, the
SF5 group has become an attractive structural motif in the
design of biologically active compounds,2b,c,6 functional ma-
terials,7 and, as recently reported, in Brønsted acid cata-
lysts.8

Due to the fact that only a few efficient synthetic meth-
ods for the introduction of the SF5 group exist,3,9 commer-
cially available SF5-containing building blocks are rare and
most of them are expensive. Therefore, the development of
new scaffolds with SF5 groups appears to be desirable.

Sulfoximines, the mono-aza analogues of sulfones, are
widely used in asymmetric synthesis and catalysis.10 Espe-
cially in the last years, such compounds have also attracted
attention as drugs11 and crop protection agents.12 Advanta-
geously, in contrast to sulfones, they are modifiable at the
sulfoximine nitrogen, which can lead to beneficial effects
on the solubility of the respective molecules.13 Fluorine-
containing sulfoximines11,12,14–16 are of particular interest
because they combine the advantages of the sulfoximidoyl
moiety with the favorable electronic and steric properties

induced by, for example, a fluoro or a trifluoromethyl sub-
stituent. However, to our knowledge, sulfoximines bearing
SF5 groups are unprecedented. Here, we fill this synthetic
gap and report on preparative routes towards a range of key
compounds with sulfoximidoyl cores and SF5 substituents.

For the preparation of the first target molecule (NH-
sulfoximine 4), methyl 4-pentafluorosulfanylphenyl sulfide
(1) was regarded as a promising starting material.17 Fulfill-
ing our expectations, the imination of 1 with cyanamide
and N-bromosuccinimide (NBS)18 proceeded smoothly, af-
fording the corresponding N-cyano sulfilimine 2 in 96%
yield (Scheme 1). Subsequent oxidation with m-CPBA18 led
to N-cyano sulfoximine 3 in 81% yield. Finally, the CN-group
was cleaved upon treatment with 50% aq. H2SO4 at 110 °C,19

providing the desired NH-sulfoximine 4 in 71% yield.20 Both
enantiomers of the racemic mixture could be separated on
analytical CSP HPLC, which allowed 4 to be obtained in
non-racemic form by preparative HPLC separation.21

Scheme 1  Synthesis of methyl 4-pentafluorosulfanylphenyl sulfoxi-
mine 4

Considering that N-arylated sulfoximines can be highly
selective ligands in asymmetric metal catalysis,10,22 we first
investigated the application of a representative N-phenyla-
tion protocol allowing the conversion of 4-pentafluorosul-
fanylphenyl sulfoximine (4) into N-arylated sulfoximine 5
under copper catalysis.23 To our delight, this approach was
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highly efficient, providing N-phenyl sulfoximine 5 in 93%
yield starting from 4 and iodobenzene as aryl source
(Scheme 2).

Scheme 2  Derivatizations of NH-sulfoximine 4 and conversion of N-cy-
ano sulfoximine 3

We then focused on the N-methylation of 4 to give 6.
This transformation was regarded as particularly important
because it was recently demonstrated that several N-meth-
yl sulfoximines showed a significantly higher solubility
compared with their isolipophilic counterparts in the sul-
fone series,13a leading to beneficial effects in their respec-
tive bioactivity studies. Here, the N-methylation of 4 was
successfully performed under Eschweiler–Clark condi-
tions,24,25 affording N-methylated sulfoximine 6 in 78% yield
(Scheme 2).

Considering that tetrazoles are carboxylic acid bio-
isosteres that often exhibit high bioactivities,26 the conver-
sion of N-cyano sulfoximine 3 into tetrazole 7 was
studied.27

By using a combination of NaN3 and ZnBr2 in methanol–
water, formation of the heterocycle proceeded smoothly,
leading to N-(1H)-tetrazole methyl 4-pentafluorosulfanyl-
phenyl sulfoximine (7) in 62% yield (Scheme 2).

The three representative synthetic transformations de-
picted in Scheme 2 allow us to draw two significant conclu-
sions: first, compounds such as 4 are readily available; and
second, standard protocols can be used for modifications of
sulfoximines with 4-pentafluorosulfanyl substituents pro-
viding interesting new building blocks for future synthetic
and biological applications.
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