Synthesis 2015; 47(05): 604-629
DOI: 10.1055/s-0034-1378944
short review
© Georg Thieme Verlag Stuttgart · New York

Tandem Radical Cyclization of N-Arylacrylamides: An Emerging Platform for the Construction of 3,3-Disubstituted Oxindoles

Jia-Rong Chen*
a   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China   Email: chenjiarong@mail.ccnu.edu.cn   Email: wxiao@mail.ccnu.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. of China
,
Xiao-Ye Yu
a   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China   Email: chenjiarong@mail.ccnu.edu.cn   Email: wxiao@mail.ccnu.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. of China
,
Wen-Jing Xiao*
a   Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China   Email: chenjiarong@mail.ccnu.edu.cn   Email: wxiao@mail.ccnu.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 13 October 2014

Accepted after revision: 05 November 2014

Publication Date:
05 December 2014 (online)


Abstract

3,3-Disubstituted oxindoles are an important family of biologically active heterocycles, and numerous synthetic methodologies have been developed for their synthesis over past decades. Recently, the tandem radical cyclization of N-arylacrylamides has provided a new powerful approach to access various diversely functionalized 3,3-disubstituted oxindoles. This review will highlight recent advances in this field as well as applications in natural product synthesis in terms of different types of radical source. Particular emphases have also been placed on working models.

1 Introduction

2 Tandem Radical Addition/Cyclization Reaction of N-Arylacrylamides with Carbon Radicals

2.1 Aryl Radicals

2.2 Alkyl Radicals

2.3 Fluorine-Containing Carbon Radicals

2.4 Acyl Radicals

3 Tandem Radical Addition/Cyclization Reaction of N-Arylacrylamides with Heteroatom Radicals

3.1 Phosphonyl Radicals

3.2 Sulfur Radicals

3.3 Nitrogen Radicals

4 Conclusion and Perspective

 
  • References

    • 1a Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 1b Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 1c Trost B, Brennan M. Synthesis 2009; 3003
    • 1d Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1e Jensen BS. CNS Drug Rev. 2006; 8: 353
    • 1f Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1g Jimenez JI, Huber U, Moore RE, Patterson GM. J. Nat. Prod. 1999; 62: 569

      For selected reviews, see:
    • 2a da Silva JF. M, Garden SJ, Pinto AC. J. Braz. Chem. Soc. 2001; 12: 273
    • 2b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
    • 2c Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 2d Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 2e Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
    • 2f Klein JE. M. N, Taylor RJ. K. Eur. J. Org. Chem. 2011; 6821
    • 2g Kumar A, Chimni SS. RSC Adv. 2012; 2: 9748
    • 2h Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 2i Shen K, Liu X.-H, Lin L.-L, Feng X.-M. Chem. Sci. 2012; 3: 327
    • 2j Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2k Cao Z.-Y, Wang Y.-H, Zeng X.-P, Zhou J. Tetrahedron Lett. 2014; 55: 2571
  • 3 Shintani R, Inoue M, Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353
  • 4 Lee TB. K, Wong GS. K. J. Org. Chem. 1991; 56: 872
  • 5 Duffey TA, Shaw SA, Vedejs E. J. Am. Chem. Soc. 2009; 131: 14
  • 6 Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
  • 7 Ma S, Han X, Krishnan S, Virgil SC, Stoltz BM. Angew. Chem. Int. Ed. 2009; 48: 8037

    • For selected reviews, see:
    • 8a Studer A. Chem. Eur. J. 2001; 7: 1159
    • 8b Majumdar KC, Basu PK, Mukhopadhyay PP. Tetrahedron 2005; 61: 10603
    • 8c Majumdar KC, Karunakar GV, Sinha B. Synthesis 2012; 44: 2475
    • 8d Yoon TP. ACS Catal. 2013; 3: 895
    • 8e Wille U. Chem. Rev. 2013; 113: 813
    • 8f Sebren LJ, Devery III JJ, Stephenson CR. ACS Catal. 2014; 4: 703
    • 8g Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C, Studer A. John Wiley & Sons; Chichester: 2012
    • 9a Lizos D, Tripoli R, Murphy JA. Chem. Commun. 2001; 2732
    • 9b Lizos DE, Murphy JA. Org. Biomol. Chem. 2003; 1: 117
  • 10 Ueda M, Uenoyama Y, Terasoma N, Doi S, Kobayashi S, Ryu I, Murphy JA. Beilstein J. Org. Chem. 2013; 9: 1340

    • For selected reviews, see:
    • 11a Roglans A, Pla-Quintana A, Moreno-Manas M. Chem. Rev. 2006; 106: 4622
    • 11b Heinrich MR. Chem. Eur. J. 2009; 15: 820
    • 11c Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi MM. Chem. Soc. Rev. 2011; 40: 4143
    • 11d Mo F.-Y, Dong G.-B, Zhang Y, Wang J.-B. Org. Biomol. Chem. 2013; 11: 1582

      For selected reviews on visible light photoredox catalysis, see:
    • 12a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 12b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 12c Prier CK, Rankic DA, Macmillan DW. Chem. Rev. 2013; 113: 5322
    • 12d Schultz DM, Yoon TP. Science (Washington, D.C.) 2014; 343: 985

    • For a recent review on visible light photoredox chemistry of aromatic diazonium salts, see:
    • 12e Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
  • 13 Fu W.-J, Xu F.-J, Fu Y.-Q, Zhu M, Yu J.-Q, Xu C, Zou D.-P. J. Org. Chem. 2013; 78: 12202
  • 14 Tang S, Zhou D, Wang Y.-C. Eur. J. Org. Chem. 2014; 3656
  • 15 Wu T, Zhang H, Liu G. Tetrahedron 2012; 68: 5229
  • 16 Xie J, Xu P, Li H.-M, Xue Q.-C, Jin H.-M, Cheng Y.-X, Zhu C.-J. Chem. Commun. 2013; 49: 5672
    • 17a Dai Q, Yu J.-T, Jiang Y, Guo S.-J, Yang H.-T, Cheng J. Chem. Commun. 2014; 50: 3865
    • 17b Xu Z.-B, Yan C.-X, Liu Z.-Q. Org. Lett. 2014; 16: 5670
  • 18 Zhou M.-B, Wang C.-Y, Song R.-J, Liu Y, Wei WT, Li J.-H. Chem. Commun. 2013; 49: 10817
  • 19 Zhou S.-L, Guo L.-N, Wang H, Duan X.-H. Chem. Eur. J. 2013; 19: 12970
  • 20 Li Z.-J, Zhang Y, Zhang L.-Z, Liu Z.-Q. Org. Lett. 2014; 16: 382
  • 21 Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
  • 22 Wei W.-T, Song R.-J, Ouyang X.-H, Li Y, Li H.-B, Li J.-H. Org. Chem. Front. 2014; 1: 484
  • 23 Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 24a Meng Y, Guo L.-N, Wang H, Duan X.-H. Chem. Commun. 2013; 49: 7540
    • 24b Zhou Z.-Z, Hua H.-L, Luo J.-Y, Chen Z.-S, Zhou P.-X, Liu X.-Y, Liang Y.-M. Tetrahedron 2013; 69: 10030
  • 25 Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
  • 27 Fan J.-H, Wei W.-T, Zhou M.-B, Song R.-J, Li J.-H. Angew. Chem. Int. Ed. 2014; 53: 6650
    • 28a Lu M.-Z, Loh TP. Org. Lett. 2014; 16: 4698
    • 28b Li J, Wang Z.-G, Wu N.-J, Gao G, You J.-S. Chem. Commun. 2014; 50: 15049
    • 29a Krisch P. Modern Fluoroorganic Chemistry . Wiley-VCH; Weinheim: 2004
    • 29b Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology. Wiley-Blackwell; Chichester: 2009
    • 29c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 29d Jin Z, Hammond GB, Xu B. Aldrichimica Acta 2012; 45: 67
    • 29e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214

      For reviews on the chemistry of fluorinated radicals, see:
    • 30a Dolbier WR. Chem. Rev. 1996; 96: 1557
    • 30b Barata-Vallejo S, Postigo A. Coord. Chem. Rev. 2013; 257: 3051
    • 30c Ni C.-F, Hu M.-Y, Hu J.-B. Chem. Rev. 2014; in press; DOI: 10.1021/cr5002386
    • 31a Esenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
    • 31b Charpentier J, Früh N, Togni A. Chem. Rev. 2014; in press; DOI: 10.1021/cr500223h
    • 32a Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
    • 32b Kong W.-Q, Casimiro M, Fuentes N, Merino E, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 13086
  • 33 Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2014; in press; DOI: 10.1021/cr400473a
  • 34 Li L, Deng M, Zheng S.-C, Xiong Y.-P, Tan B, Liu X.-Y. Org. Lett. 2014; 16: 504
    • 35a Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 35b Koike T, Akita M. Top. Catal. 2014; 1
    • 35c Zeng T.-T, Xuan J, Chen J.-R, Lu L.-Q, Xiao W.-J. Imaging Sci. Photochem. 2014; 32: 415
  • 36 Xu P, Xie J, Xue Q.-C, Pan C.-D, Cheng Y.-X, Zhu C.-J. Chem. Eur. J. 2013; 19: 14039
    • 37a Tang X.-J, Thomoson CS, Dolbier WR. Jr. Org. Lett. 2014; 16: 4594
    • 37b Fu W.-J, Zhu M, Zou G.-L, Xu C, Wang Z.-Q. Synlett 2014; 25: 2513
    • 38a Wang J.-Y, Su Y.-M, Yin F, Bao Y, Zhang X, Xu Y.-M, Wang X.-S. Chem. Commun. 2014; 50: 4108
    • 38b Wang J.-Y, Zhang X, Bao Y, Xu Y.-M, Cheng X.-F, Wang X.-S. Org. Biomol. Chem. 2014; 12: 5582
  • 39 For a recent review on application of Langlois’ reagent in trifluoromethylation reaction, see: Zhang C. Adv. Synth. Catal. 2014; 356: 2895
    • 40a Yang F, Klumphu P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 40b Wei W, Wen J.-W, Yang D.-S, Liu X.-X, Guo M.-Y, Dong R.-M, Wang H. J. Org. Chem. 2014; 79: 4225
    • 40c Liu J.-D, Zhuang S.-B, Gui Q.-W, Chen X, Yang Z.-Y, Tan Z. Eur. J. Org. Chem. 2014; 3196
  • 41 Zhang L.-Z, Li Z.-J, Liu Z.-Q. Org. Lett. 2014; 16: 3688
    • 42a Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
    • 42b Jia F, Liu K.-S, Xi H, Lu S.-L, Li Z.-P. Tetrahedron Lett. 2013; 54: 6337
  • 43 Ouyang X.-H, Song R.-J, Li J.-H. Eur. J. Org. Chem. 2014; 3395
    • 44a Wang H, Guo L.-N, Duan X.-H. Adv. Synth. Catal. 2013; 355: 2222
    • 44b Xu X.-S, Tang Y.-C, Li X.-Q, Hong G, Fang M.-W, Du X.-H. J. Org. Chem. 2014; 79: 446
    • 45a Kolio DT. Chemistry and Application of H-Phosphonates . Elsevier Science; Amsterdam: 2006
    • 45b Allen DW. Organophosphorus Chem. 2010; 39: 1
    • 45c van Leeuwen PW. N. M, Kamer PC. J, Claver C, Pàmies O, Diéguez M. Chem. Rev. 2011; 111: 2077
    • 46a Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 46b Li Y.-M, Shen Y.-H, Chang K.-J, Yang S.-D. Tetrahedron 2014; 70: 1991
  • 47 Kong W.-Q, Merino E, Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 48a Katritzky AR, Meth-Cohn O, Rees CW In Sulfur Reagents in Organic Synthesis . Metzner P, Thuillier A. Academic; London: 1994
    • 48b Petrini M. Chem. Rev. 2005; 105: 3949
    • 48c Alba AN, Companyo X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 49a Bertrand MP, Ferreri C In Radicals in Organic Synthesis . Vol. 2. Renaud P, Sibi M. Wiley-VCH; Weinheim: 2001: 485-504
    • 49b Postigo A. RSC Adv. 2011; 1: 14
    • 49c Liu H, Jiang X.-F. Chem. Asian J. 2013; 8: 2546
  • 50 Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 51a Shen T, Yuan Y.-Z, Song S, Jiao N. Chem. Commun. 2014; 50: 4115
    • 51b Wei W, Wen J.-W, Yang D.-S, Du J, You J.-M, Wang H. Green Chem. 2014; 16: 2988

      For selected reviews, see:
    • 52a Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
    • 52b Tlili A, Billard T. Angew. Chem. Int. Ed. 2013; 52: 6818
    • 52c Xu X.-H, Matsuzaki K, Shibata N. Chem. Rev. 2014; in press; DOI: 10.1021/cr500193b
  • 53 Yin F, Wang X.-S. Org. Lett. 2014; 16: 1128
    • 54a Fache F, Schulz E, Tommasino ML, Lemaire M. Chem. Rev. 2000; 100: 2159
    • 54b Hili R, Yudin AK. Nat. Chem. Biol. 2006; 2: 284
    • 54c Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006; 4: 2337
    • 55a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 55b Organic Azides: Syntheses and Applications . Bräse S, Banert K. Wiley-VCH; Weinheim: 2010
  • 56 Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 57a Wei X.-H, Li Y.-M, Zhou A.-X, Yang T.-T, Yang S.-D. Org. Lett. 2013; 15: 4158
    • 57b Yuan Y.-Z, Shen T, Wang K, Jiao N. Chem. Asian J. 2013; 8: 2932
    • 59a Li Y.-M, Wei X.-H, Li X.-A, Yang S.-D. Chem. Commun. 2013; 49: 11701
    • 59b Li Y.-M, Shen Y, Chang K.-J, Yang S.-D. Tetrahedron Lett. 2014; 55: 2119
  • 60 Shen T, Yuan Y.-Z, Jiao N. Chem. Commun. 2014; 50: 554
  • 61 Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science (Washington, D.C.) 2010; 329: 1175
    • 62a Wei H.-L, Dufour J, Neuville L, Zhu J.-P. Org. Lett. 2011; 13: 2244
    • 62b Fabry DC, Stodulski M, Hoerner S, Gulder T. Chem. Eur. J. 2012; 18: 10834
    • 62c Stodulski M, Goetzinger A, Kohlhepp SV, Gulder T. Chem. Commun. 2014; 50: 3435
    • 63a Zou Y.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2013; 52: 11701
    • 63b Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874