W.-K. AN, M.-Y. HAN, C.-A. WANG, S.-M. YU, Y. ZHANG, S. BAI, W. WANG* (LANZHOU UNIVERSITY AND COLLABORATIVE INNOVATION CENTER OF CHEMICAL SCIENCE AND ENGINEERING, TIANJIN, P. R. OF CHINA)

Insights into the Asymmetric Heterogeneous Catalysis in Porous Organic Polymers: Constructing a TADDOL-Embedded Chiral Catalyst for Studying the Structure–Activity Relationship *Chem. Eur. J.* **2014**, *20*, 11019–11028.

An Organo Porous Polymer Catalyst for Asymmetric Alkylation with Et₂Zn

Significance: A chiral $\alpha,\alpha,\alpha',\alpha'$ -tetraaryl-1,3-dioxolane-4,5-dimethanol-based chiral porous polymer (TADDOL-CPP) was prepared and applied to the asymmetric alkylation of aromatic aldehydes with ${\rm Et_2Zn}$ in the presence of $[{\rm Ti}({\it Oi-Pr})_4]$ to give the corresponding products ${\bf 1a-i}$ in up to 96% yield with up to 94% ee.

Comment: The TADDOL-CPP as well as the TADDOL-CPP/Ti catalysts were characterized by ¹³C CP/MAS NMR spectroscopy, TGA, BET, XRD, TEM and ICP analyses. TADDOL-CPP was recovered by centrifugation and reused ten times to give **1a** with slight loss of the catalytic activity (91% ee to 75% ee).

SYNFACTS Contributors: Yasuhiro Uozumi, Yoichi M. A. Yamada, Heeyoel Baek Synfacts 2014, 10(11), 1219 Published online: 20.10.2014 **DOI:** 10.1055/s-0034-1379382; **Reg-No.:** Y12214SF

Category

Polymer-Supported Synthesis

Key words

porous organic polymers

aldehydes

heterogeneous catalysis

