The Synthesis of Medium-Chain-Length β-Hydroxy Esters via the Reformatsky Reaction

Miloslav Sailer
Krystyn I. Dubicki
John L. Sorensen*

Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
John.Sorensen@umanitoba.ca

Received: 09.07.2014
Accepted after revision: 24.09.2014
Published online: 29.10.2014
DOI: 10.1055/s-0034-1379479; Art ID: ss-2014-m0434-op

Abstract The synthesis of medium-chain-length β-hydroxy esters in good yield via the Reformatsky reaction is described. This work will be used as the basis for further investigation of hydroxyalkanoate polymers as potential feedstock for biofuel production.

Key words Reformatsky reaction, biosynthesis, polyhydroxyalkanoate, biofuel, 3-hydroxy esters, Pseudomonas putida

There has been recent interest in developing alternate sources of biofuels that can be used as a replacement for fossil fuels. One of the most prevalent biofuels is biodiesel produced by the methanolysis of long-chain (C16–C20) fatty acid triacyl glycerides that are the major constituents of plant oils.1 However, biodiesel production results in several by-products, such as glycerol and free fatty acids, which cannot be used as fuels and are of otherwise low value. It has been recently demonstrated that these waste by-products can be used as feedstock for the bacteria Pseudomonas putida LS46.2 This strain of P. putida can efficiently convert these by-products into a variety of medium-chain-length polyhydroxyalkanoates (mcl-PHAs – Scheme 1), with chain lengths of 6 to 14 carbons. These bioester polymers can be considered of higher value than the biodiesel waste by-products. For example, polyhydroxyalkanoate (PHA) has been investigated as a feedstock for biodegradable plastics and other products.3

We are interested in investigating the chemical conversion of PHA into other value-added products, such as ‘drop-in’ biofuels. For example the methanolysis of PHA results in a 3-hydroxymethyl ester with the chain length, and resulting chemical and physical properties, which is dependent on the chemical composition of the feedstock polymer. We decided to investigate 3-hydroxymethyl and –ethyl esters with a full range of chain lengths to determine the optimal of carbon atoms for downstream conversion to biofuel. However, optimizing growth conditions for P. putida to produce PHA with a specific chain length is time-consuming and expensive. In addition, although the free acids are commercially available their average cost (~$10/mg) requires the development of a more economical synthesis. Therefore, a synthetic methodology was developed that would provide a convenient and economical access to a series of 3-hydroxy esters of the required chain length (C4–C12).

We decided to investigate the use of the Reformatsky reaction for this purpose as it is one of the most useful methods for the formation 3-hydroxy esters.4 The Reformatsky reaction can be carried out in aqueous neutral conditions, in contrast to the alkaline conditions required for aldol condensations or the dry inert conditions required when using Grignard reagents. The Reformatsky reaction has been extended to a large variety of substrates5 and an asymmetric version has even been developed.6 It was decided that this reaction would offer an attractive approach to synthesize our desired compounds as a series of aldehyde precursors are commercially available as is both ethyl and methyl bromoacetate. Here, we report the synthesis of a series of 3-hydroxymethyl and –ethyl esters in good yields using the Reformatsky reaction.

The Reformatsky reaction was used to generate the β-hydroxy esters (Table 1) reported here. The reactions were carried out using wet THF as solvent since it had been previously reported that the use of wet THF in the Reformatsky...
reaction produces significantly better yields with aliphatic aldehydes than anhydrous THF. Preliminary method development reactions were conducted on a small scale (2 mmol) with the product yields ranging from 42 to 81%. Slow addition of BF₃·OEt₂ via syringe pump was also used.

Table 1 Synthesis of C6 to C12 β-Hydroxy Esters

<table>
<thead>
<tr>
<th>Product</th>
<th>R¹</th>
<th>R²</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(CH₂)₂Me</td>
<td>Me</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>(CH₂)₂Me</td>
<td>Et</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>(CH₂)₂Me</td>
<td>Me</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>(CH₂)₂Me</td>
<td>Et</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>(CH₂)₂Me</td>
<td>Me</td>
<td>92</td>
</tr>
<tr>
<td>6</td>
<td>(CH₂)₂Me</td>
<td>Et</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>(CH₂)₂Me</td>
<td>Me</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>(CH₂)₂Me</td>
<td>Et</td>
<td>95</td>
</tr>
</tbody>
</table>

In order to produce an amount of each 3-hydroxy ester sufficient for testing as potential biofuels we decided to optimize the reaction at a larger scale. However, due to the exothermic nature of the Reformatsky reaction, scale-up often requires specialized equipment and reaction conditions.⁸,⁹ We therefore decided to optimize our reaction at the intermediate scale also provides an amount of product that is sufficient for evaluating these molecules as potential biofuels. This testing is underway and will be reported on when complete.

In summary, we have synthesized a series of 3-hydroxy esters with carbon chain lengths of 6–12 carbons using the Reformatsky reaction. This method has been optimized for an intermediate scale of 100 mmol, which prevents runaway reactions and the formation of side products. This intermediate scale also provides an amount of product that is sufficient for evaluating these molecules as potential biofuels. This testing is underway and will be reported on when complete.

All ¹H NMR and ¹³C NMR spectra were obtained using a Bruker AC 300 in CDCl₃ unless otherwise stated. IR spectra were obtained by ATR on a Bruker Alpha FT-IR using a thin film formed by solvent evaporation.
mL, aq 1 M HCl (2 × 50 mL), H2O (100 mL) and brine (50 mL), and dried (Na2SO4). Removal of hexanes under vacuum furnished the products 1–8 in yields ranging from 86 to 95% (Table 1).

Methyl 3-Hydroxyhexanoate (1)
Yield: 13.14 g (90%, 90 mmol); clear yellow oil.
IR (film): 3458 w, 2929 m, 1724 s, 1437 m, 1164 s cm⁻¹.

Ethyl 3-Hydroxydecanoate (6)
Yield: 14.79 g (85%, 85 mmol); clear yellow oil.
IR (film): 3432 w, 2931 m, 1718 s, 1372 m, 1162 s, 1026 s, 732 w cm⁻¹.

Methyl 3-Hydroxyoctanoate (5)
Yield: 16.17 g (95%, 95 mmol); clear yellow oil.
IR (film): 3458 w, 2929 m, 1724 s, 1437 m, 1164 cm⁻¹.

Ethyl 3-Hydroxyoctanoate (4)
Yield: 14.79 g (85%, 85 mmol); clear yellow oil.
IR (film): 3458 w, 2929 m, 1724 s, 1437 m, 1164 cm⁻¹.

Methyl 3-Hydroxydecanoate (7)
Yield: 14.4 g (90%, 90 mmol); clear yellow oil.
IR (film): 3458 w, 2960 w, 1718 s, 1465 w, 1372 m, 1166 s, 1017 s, 847 w, 608 w cm⁻¹.

Methyl 3-Hydroxydodecanoate (8)
Yield: 23.18 g (95%, 95 mmol); clear yellow oil.
IR (film): 3458 w, 2929 m, 1720 m, 907 s, 728 w, 647 cm⁻¹.

Saponification of Esters; General Procedure
To a 50 mL round-bottomed flask fitted with a stir bar was added hexane (5 mL) and the respective 3-hydroxyethyl ester (1 mmol). This mixture was heated to 50 °C at which point sat. KOH in MeOH (0.5 mL) was added. This led to the instant formation of a precipitate. The mixture was then stirred vigorously at 60 °C for 30 min, then removed from heat, and the solvents were evaporated under reduced pressure to provide the product as a potassium salt. This residue was dissolved in distilled H2O (10 mL) and extracted with CHCl3 (3 × 10 mL). The aqueous layer was collected and acidified with concd HCl to pH <1. Et2O (20 mL) was added to the aqueous acidic solution and this solution was stirred vigorously for 1 h. The organic layer was dried (Na2SO4), filtered, and evaporated under reduced pressure to give the corresponding product, which was used without further purification (Table 2).

3-Hydroxyhexanoic Acid (9)
Yield: 95 mg (72%, 0.72 mmol); clear oil.
IR (film): 3390 br, 2950 m, 1704 s, 1174 w, 1017 m, 845 cm⁻¹.

3-Hydroxyoctanoic Acid (10)
Yield: 130 mg (81%, 0.81 mmol); yellow oil.
IR (film): 3312 br, 2929 m, 1734 s, 1404 m, 1044 m, 872 w, 608 cm⁻¹.
13C NMR (75 MHz, CDCl$_3$): $\delta = 14.1, 22.7, 25.2, 31.7, 36.5, 41.2, 68.2, 177.9$.

3-Hydroxydecanoic Acid (11)
Yield: 173 mg (92%, 0.92 mmol); white solid; mp 57.5 °C.
IR (film): 3534w (H$_2$O), 3036br, 2920s, 2848m, 1679s, 1439m, 1221s, 907m, 710w, 544w cm$^{-1}$.
1H NMR (300 MHz, CDCl$_3$): $\delta = 0.87$ (t, $J = 6.61$ Hz, 3 H), 1.27 (m, 12 H), 2.45 (dd, $J = 8.92$, 16.6 Hz, 1 H), 2.56 (dd, $J = 3.84$, 16.4 Hz, 1 H), 4.03 (m, 1 H), 6.68 (br, 1 H).
13C NMR (75 MHz, CDCl$_3$): $\delta = 14.2, 22.7, 25.5, 29.3, 29.5, 31.9, 36.6, 41.2, 68.2, 178.0$.

3-Hydroxydodecanoic Acid (12)
Yield: 186 mg (86%, 0.86 mmol); white solid; mp 74 °C.
IR (film): 3534w (H$_2$O), 2952br, 2913s, 2847m, 1680s, 1469w, 1441w, 1216m, 866w, 548m cm$^{-1}$.
1H NMR (300 MHz, acetone-d_6): $\delta = 0.87$ (t, $J = 6.34$ Hz, 3 H), 1.29 (m, 16 H), 2.36 (dd, $J = 8.02$, 15.6 Hz, 1 H), 2.45 (dd, $J = 4.66$, 15.6 Hz, 1 H), 2.80 (br, 1 H), 3.97 (m, 1 H).

Acknowledgment
Funding from the BioFuelNet Network of Centers of Excellence and the Manitoba Centers of Excellence Fund is gratefully acknowledged.

Supporting Information
Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1379479. Included are 1H and 13C NMR spectra.

References

This article differs from the e-first online version only in its layout; no content has been changed.