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Abstract An efficient asymmetric vinylogous Mannich (AVM) addition
reaction of 3-alkenyl-2-oxindoles to o-fluoroalkyl aldimines has been
developed. This reaction provided various optical active a-alkylidene-
6-amino-6-fluoroalkyl oxindoles in excellent yields, complete y-site
regioselectivity, and excellent diastereoselectivities.
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The 6-amino-a,B-unsaturated carbonyl compounds rep-
resent an important class of units in modern organic and
medicinal chemistry.! They are useful building blocks for
the synthesis of various pharmaceuticals and biologically
active natural products.? It is well known that fluorine-
containing compounds are considered as the extraordinari-
ly promising drug candidates because the introduction of
fluorine atom or fluorine-containing groups into organic
compounds often significantly improves the chemical,
physical, and biological properties of the parent com-
pound.?* Especially, the fluoroalkyl-substituted molecules,
such as trifluoromethylated and difluoromethylated com-
pounds, have attracted increasing attention.”> Thus, the in-
corporation of fluoroalkyl into §-amino-o,B-unsaturated
carbonyl compounds will provide novel fluorinated moi-
eties, which might be applied in various research fields.
Among them, §-amino-8-fluoroalkyl-a,B-unsaturated car-
bonyl compounds are particularly interesting, because the
neighboring electron-withdrawing fluoroalkyl groups
would change the basicity of imine groups, thus affecting
their bioactivities. Normally, these compounds were pre-
pared by vinylogous Mannich reactions.® In 1992, Tsukamo-
to and Kitazume reported the Lewis acid promoted reaction
of fluorinated N,0-acetal with trimethylsilyloxyfuran

Ry = CF3, CHF»

KHMDS
Ti(Oi-Pr)4

| THF
PG —78°C, 12 h

14 examples, 55-92% yield
up to 98:2 dr, >99:1 ZE

(Scheme 1, a).” The Lewis acid catalyzed vinylogous Man-
nich addition of trimethylsilyloxyfuran to fluorinated al-
dimines was disclosed by Crousse and co-workers in 2004
(Scheme 1, a).8 Shi’s group realized the first enantioselec-
tive vinylogous Mannich reaction of fluorinated aldimines
bearing a chiral auxiliary [(S)-1-phenylethyl group] and sil-
oxyfurans under the catalytic environment of silver acetate
and axially chiral phosphine-oxazoline ligand (Scheme 1,
b).? Very recently, we developed a tunable and highly regio-
and diastereoselective addition reaction of acyclic silyl di-
enolates to a-fluoroalkyl sulfinylimines, in which the Lewis
acid TMSOTf was a critical parameter in the control of y-site
regioselectivity (Scheme 1, c).1° All the previous works need
silylated substrates as the nucleophiles. From the point of
atom and step economy, it is worthy to investigate the addi-
tion reactions directly using a,B-unsaturated carbonyl com-
pounds as the nucleophiles. In light of the important phar-
maceutical implications of the privileged structural motif
oxindole,'! herein we report a regio- and diastereoselective
vinylogous Mannich addition of 3-alkenyl-2-oxindoles to a-
fluoroalkyl aldimines to afford various chiral a-alkylidene-
§-amino-6-fluoroalkyl oxindoles (Scheme 1, d).

Initially, the reaction conditions were optimized using
(Ss)-N-tert-butanesulfinyl-3,3,3-trifluoroacetaldimine (1a)!2
and N-Boc-protected 3-alkylidene-2-oxindole 2a'3 as the
model substrates (Table 1). Treatment of the substrates with
TMSOTf and Et;N gave only a silylated intermediate of 2a.!3d
The desired product 3a was not obtained (Table 1, entry 1).
In view of the better nucleophilic properties of the metallic
enolate intermediate in comparison to silyl enolate, LDA
was chosen as the base. To our delight, the addition reaction
happened in the presence of LDA, and 3a was obtained in
moderate yield, with virtually complete y-site selectivity
(>99:1 y/a) and good diastereoselectivity (94:6 dr, ZJE =
8:1; Table 1, entry 2). Considering the fact that the addition
of Lewis acid might improve the yield and diastereoselec-
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Scheme 1 Synthesis of 6-amino-a,B-unsaturated carbonyl compounds by vinylogous Mannich reactions

tivity because of its coordination with sulfinylimine sub-
strate,’* different Lewis acids were then investigated.
Among the three typical Lewis acids, Ti(Oi-Pr),, AlMe;, and
BF;-OEt,, Ti(Oi-Pr), showed the highest efficiency and
sharply increased the yield of 3a from 60% to 98% (Table 1,
entries 3-5). When the base was changed from LDA to
KHMDS, 3a was obtained in similar yield with much higher
Z|E ratio (Table 1, entry 6). Finally, different solvents includ-
ing toluene, Et,0, and hexane were screened (Table 1, en-
tries 7-9). However, no better result was obtained.

With the optimized conditions in hand, the substrate
scope of direct asymmetric vinylogous Mannich (AVM) re-
action was surveyed.'>'6 The results are summarized in
Scheme 2. Firstly, 3-alkylidene-2-oxindoles 2a-d bearing
diverse nitrogen protecting groups, Boc, Moc, Bn, and Me,
reacted smoothly with 1a under identical conditions, af-
fording the corresponding products 3a-d in moderate to
good yields and excellent stereoselectivities. Additionally,
the reaction conditions displayed good compatibility with
the substituent pattern on the phenyl ring of the 2-oxin-
dole. The substrates 2e-g, bearing electron-donating and
electron-withdrawing groups, can be efficiently trans-
formed to the corresponding products in excellent yields
and stereoselectivities. Subsequently, the patterns of R? in
3-alkylidene-2-oxindole 2h-j having aromatic groups were

tested as the substrates. The reactions proceeded well af-
fording products 3h-j in good yields and diastereoselectivi-
ties, although the Z/E ratios were comparably low. It was
noteworthy that this protocol could be applied to difluoro-
methylated sulfinylimine 1b. The corresponding difluoro-
methylated products 3k-n were conveniently obtained
under the optimal reaction conditions. The 3-(propan-
2-ylidene)benzofuran-2(3H)-one 20'7 was also a suitable
substrate for this reaction to furnish the product 30 in mod-
est yield and good stereoselectivity.

The absolute configuration of these a-alkylidene-&-
amino-8-fluoroalkyl oxindoles 3 was confirmed by X-ray
crystallographic analysis of compounds 3d (Figure 1).18
Normally, a nonchelated transition-state model was in-
volved in the addition reaction of nucleophiles to fluorinat-
ed sulfinylimines.'? The stereochemical outcome observed
in the present study could also be explained by the nonche-
lated transition-state model, in which the sulfinyl oxygen
coordinates to Ti(Oi-Pr), and sterically shields the Re face of
the imine. Thus, the Si attack from metallic enolate inter-
mediates would produce adducts 3 with (Cs,Ss)-configura-
tions. The high Z/E ratios in compound 3 might be caused
by the cyclic structure of nucleophilic enolate intermedi-
ates.!® The accurate reaction mechanism still needs further
investigation.
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Scheme 2 Vinylogous Mannich addition of 3-alkenyl-2-oxindoles to o-fluoroalkyl aldimines

© Georg Thieme Verlag Stuttgart - New York — Synlett 2015, 26, 67-72

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



Synlett Y. Liu et al.

Table 1 Optimization of Reaction Conditions®

0O
1
N/S\K
A
FsC H base
1a Lewis acid
+ —_—
Y solvent
Y temp,12h /
7k Boc
o 3a
o
N
\
Boc
2a
Entry Base Lewis acid Solvent Temp  Yield ZzZ/E>  dr
(9 (%)°
1c EtN TMSOTf  CH,Cl, Otort. O -
2 LDA - THF -78 60 8:1 94:6
3 LDA Ti(Oi-Pr), THF -78 98 61 946
4 LDA AlMe; THF -78 58 12:1 92:8
5 LDA BF;-OEt, THF -78 70 7:1 95:5
6 KHMDS  Ti(Oi-Pr), THF -78 97 16:1 93:7
7 KHMDS  Ti(Oi-Pr); toluene -78 87 121 937
8 KHMDS  Ti(Oi-Pr), Et,0 -78 41 21 946
9 KHMDS  Ti(Oi-Pr), hexane -78 18 -

2 Reactions were carried out using 1a (0.3 mmol), 2a (0.36 mmol, 1.2
equiv), base (0.36 mmol, 1.2 equiv), and Lewis acid (0.33 mmol, 1.1 equiv)
in dry solvent (2.5 mL) for 12 h.

b Ratios and yields were determined by '°F NMR spectroscopy of the crude
reaction mixture using benzotrifluoride as an internal standard.

¢Base (0.33 mmol, 1.1 equiv) and Lewis acid (0.36 mmol, 1.2 equiv).

3d (Cs, Sg)

Figure 1 X-ray crystal structure of 3d and proposed transition-state
model

It should be mentioned that the N-tert-butylsulfinyl
group can serve not only as an efficient chiral auxiliary, but
also as an amine protecting group.? It could be readily
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cleaved under mild acidic conditions. After deprotection,
the trifluoromethylated free amines 4 can be easily ob-
tained in high yield (Scheme 3).

i-Pr,0, EtOH
0°C
97%

Scheme 3 Conversion of 3d into the free primary amine 4

In summary, we have demonstrated a practical and effi-
cient approach to synthesize a-alkylidene-6-amino-6-fluo-
roalkyl oxindoles via a regio- and stereoselective vinylogous
Mannich-type reaction of fluorinated N-tert-butanesulfinyl
aldimines with 3-alkenyl-2-oxindoles. This protocol dis-
played broad substrate scope, good functional-group com-
patibility, and satisfactory stereocontrol. Further applica-
tions of this method for the preparation of new fluorinated
bioactive molecules are in progress.
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