Synthesis 2015; 47(02): 175-180
DOI: 10.1055/s-0034-1379635
feature
© Georg Thieme Verlag Stuttgart · New York

Effect of Substituents and Stability of Transient Aluminum–Aminals­ in the Presence of Nucleophiles

Francis J. Barrios
a   Department of Chemistry and Physics, Bellarmine University, 2001 Newburg Rd., Louisville, KY 40205, USA
,
Brannon C. Springer
b   Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
,
Robert A. Hazlitt
b   Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
c   Department of BioMolecular Sciences, University of Mississippi, 317 Faser Hall, P.O. Box 1848, University, MS 38677, USA   Email: dacolby@olemiss.edu
,
David A. Colby*
b   Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
c   Department of BioMolecular Sciences, University of Mississippi, 317 Faser Hall, P.O. Box 1848, University, MS 38677, USA   Email: dacolby@olemiss.edu
› Author Affiliations
Further Information

Publication History

Received: 15 October 2014

Accepted after revision: 17 November 2014

Publication Date:
05 December 2014 (online)


Abstract

Disubstituted hydroxylamines are synthesized and used to form aluminum–amide complexes. These reagents mask carbonyl groups in situ via nucleophilic addition. The stability and utility of the aluminum–aminals are presented in the context of selectively controlling nucleophilic addition on substrates with multiple carbonyl groups.

 
  • References

  • 1 Yahata K, Minami M, Yoshikawa Y, Watanabe K, Fujioka H. Chem. Pharm. Bull. 2013; 61: 1298
    • 2a Reetz MT, Wenderoth B. Tetrahedron Lett. 1982; 23: 5259
    • 2b Reetz MT, Wenderoth B, Peter R. J. Chem. Soc., Chem. Commun. 1983; 406
    • 2c Reetz MT, Steinbach R, Westermann J, Peter R, Wenderoth B. Chem. Ber. 1985; 118: 1421
    • 3a Maruoka K, Imoto H, Yamamoto H. Synlett 1994; 441
    • 3b Maruoka K, Saito S, Yamamoto H. Synlett 1994; 439
    • 3c Maruoka K, Saito S, Concepcion AB, Yamamoto H. J. Am. Chem. Soc. 1993; 115: 1183
    • 3d Maruoka K, Araki Y, Yamamoto H. J. Am. Chem. Soc. 1988; 110: 2650
    • 3e Maruoka K, Araki Y, Yamamoto H. Tetrahedron Lett. 1988; 29: 3101
  • 4 Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815

    • For recent preparations of Weinreb amides, see:
    • 5a Boufroura H, Mauduit M, Drège E, Joseph D. J. Org. Chem. 2013; 78: 2346
    • 5b Więckowska A, Fransson R, Odell LR, Larhed M. J. Org. Chem. 2011; 76: 978
    • 5c Davis FA, Theddu N. J. Org. Chem. 2010; 75: 3814
  • 6 Taillier C, Gille B, Bellosta V, Cossy J. J. Org Chem. 2005; 70: 2097
  • 7 Taillier C, Bellosta V, Meyer C, Cossy J. Org. Lett. 2004; 6: 2145
  • 8 Barrios FJ, Zhang X, Colby DA. Org. Lett. 2010; 12: 5588
  • 9 Comins DL. Synlett 1992; 615
  • 10 Hoffmann RW, Munster I. Tetrahedron Lett. 1995; 36: 1431
  • 11 Kruger J, Hoffmann RW. J. Am. Chem. Soc. 1997; 119: 7499
  • 12 Roschangar F, Brown JC, Cooley BE, Sharp MJ, Matsuoka RT. Tetrahedron 2002; 58: 1657
  • 13 Barrios FJ, Springer BC, Colby DA. Org. Lett. 2013; 15: 3082
  • 14 Barrios FJ. Ph.D. Dissertation. Purdue University; USA: 2013
    • 15a Inomata T, Eguchi H, Funahashi Y, Ozawa T, Matsuda H. Langmuir 2012; 28: 1611
    • 15b Donkor IO, Zheng X, Han J, Lacy C, Miller DD. Bioorg. Med. Chem. Lett. 2001; 11: 1753
  • 16 Nicolaou KC, Mathison CJ. N, Montagnon T. J. Am. Chem. Soc. 2004; 126: 5192
  • 17 Peri F, Dumy P, Mutter M. Tetrahedron 1998; 54: 12269
  • 18 Kolasa T, Miller MJ. J. Org. Chem. 1990; 55: 1711
  • 19 Wencewicz TA, Yang B, Rudloff JR, Oliver AG, Miller MJ. J. Med. Chem. 2011; 54: 6843
  • 20 Miyabe H, Asada R, Takemoto Y. Org. Biomol. Chem. 2012; 10: 3519