Metal-Catalyzed Asymmetric
Synthesis and
Stereoselective
Reactions

Key words

enamides

titanium
BINOLs

Ti(Oi-Pr) ${ }_{4}(10 \mathrm{~mol} \%)$ (R)-BINOL (20 mol\%) $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mol} \%)$
o-xylene, $40^{\circ} \mathrm{C}, 2-168 \mathrm{~h}$
0.5 mmol scale

up to 99.2% ee
dr up to >20 :

Mode of reactivity:

Product derivatization:

*Slight loss in ee is explained by the presence of a minor amount of the opposite diastereomer of lower ee in starting material

Significance: Tertiary enamides are related to enamines by replacement of an N -alkyl substitutent with an electron-withdrawing group. Despite this change, they remain nucleophilic. Taking advantage of this characteristic and of the electrophilicity of the transient iminium, the authors developed a modular titanium(IV)-catalyzed synthesis of 4-chromanol derivatives, by reaction with salicylaldehydes.

Comment: The use of a titanium-(R)-BINOL complex enabled the synthesis of diverse 4-chromanol products with good to excellent enantio- and diastereoselectivity. Water was found to have a marked effect on enantioselectivity: under anhydrous conditions, the ee decreased to 50.8%, whereas it was measured at 96.5% in the presence of $20 \mathrm{~mol} \%$ water, in the model reaction. The exact mechanism remains to be elucidated.

[^0]
[^0]: sYnfacts Contributors: Mark Lautens, Thomas Johnson
 Synfacts 2015, 11(1), 0068 Published online: 15.12.2014
 DOI: 10.1055/s-0034-1379692; Reg-No.: L15814SF

