Enantioselective Rhodium-Catalyzed Synthesis of Axially Chiral Biaryls

Significance: Several bioactive molecules contain an axially chiral biaryl subunit. Although several methods exist for their synthesis, the use of direct C–H functionalization is less well studied. The authors present a rhodium-catalyzed dehydrogenative Heck coupling to produce axially chiral biaryls using the Cramer complex.

Comment: The substrate scope showed variability in the aza biaryl starting material and the olefin coupling partner. The products were shown to be competent in rhodium-catalyzed 1,4-additions to cyclohexenone with phenylboronic acid, producing the adduct in up to 77% yield and with 68% ee.

SYNFACTS Contributors: Mark Lautens, Zafar Qureshi

Syntfacts 2015, 11(1), 0044 Published online: 15.12.2014
DOI: 10.1055/s-0034-1379694; Reg-No.: L16014SF

2015 © Thieme Stuttgart • New York